
JANUARY 1996 Delphi INFORMANT ▲ 1

ON THE COVER
7 Great Journeys, Single Steps — Gary Entsminger

Object-oriented programming is a well-accepted approach to software development
that’s reached its apotheosis with Delphi. But it wasn’t always so. Mr Entsminger
kicks off the new year with a new series that explores the state of OOP. This first
article recaps the history and development of OOP, and compares the object models
that dominate the current market: Windows/Visual Basic and Delphi.

FEATURES
13 Informant Spotlight — John O’Connell

Most of us have used Windows’ DDE (Dynamic Data Exchange) at some point to auto-
mate inter-application tasks. When it comes to that first Delphi implementation, howev-
er, there’s plenty to learn. Which is where Mr O’Connell comes in with his example-
laden introduction to the DDEServerConv and DDEServerItem components.

24 Inside Object Pascal — Kevin Bluck
The MessageDlg function is handy, and meets many needs as it comes. However, it
does have its limitations. For example, it can be unwittingly bypassed with a single
key stroke. In response, Mr Bluck presents us with a handful of enhanced dialog box
routines based on the undocumented Object Pascal function, CreateMessageDlg.

31 DBNavigator — Cary Jensen, Ph.D.
Dr Jensen takes his popular “DBNavigator” column into the new year with the first
of a two-part series. The topic is filtering Paradox data, and Cary begins by describ-
ing two techniques based on the Table component. One links related tables using a
secondary index, the second demonstrates how to restrict a view to a specific range.

36 On the Net — Carol Boosembark
With a plethora of tools and information, the Internet is a resource no Object Pascal
programmer should be without. But where to start? Ms Boosembark answers with her
guided tour of the Internet from a Delphi developer’s perspective. This month the focus
is on Borland’s World Wide Web site, “Borland Online.”

38 At Your Fingertips — David Rippy
Start off the year with some great tips! This month Mr Rippy shows us how to per-
form locates on non-indexed fields, determine the record number in a Paradox table,
create a two-line message using the MessageDlg function, and move to a specific
property quickly in the Delphi Object Inspector.

REVIEWS
40 Orpheus — Product review by Cary Jensen, Ph.D.

There are two kinds of third-party Delphi tools: VCLs and — everything else.
TurboPower’s Orpheus falls into the first category, and according to Dr Jensen,
“qualifies as one of the best bargains in the Delphi add-on market.”

43 RoboHELP 95 — Product review by Gary Entsminger
There’s no getting around it, building a Windows Help system isn’t a lot of fun.
However, there are some tools that allay the tedium. Outstanding among them is Blue
Sky Software’s RoboHELP. Mr Entsminger checks out the Windows 95 incarnation.

47 Delphi How-To
Book review by Larry Clark

48 Secrets of Consulting
Book review by Jeff Sims

DEPARTMENTS
2 Editorial
3 Delphi Tools
5 Newsline

January 1996 - Volume 2, Number 1

Cover Art By: Tom McKeith

Great Journeys,
Single Steps

The State of the Object Art

Symposium

“Over the years, I have made several pilgrimages to Delphi.”
— Gore Vidal, Palimpsest
Iwas delighted when, in early 1995, Borland decided to keep the prerelease designation, Delphi, of their latest
object-oriented RAD tool. And from what I understand, much of the credit should go to Zack Urlocker for the

bold choice of retaining the beta name for the shipping product — as far as I know an unprecedented decision.
And there were plans to rename Delphi. I believe at one time its name was to be the workaday appellation
“Application Builder,” or perhaps “AppBuilder.” Mmmm — sexy.
One wholly pragmatic reason
that Delphi is a great choice
for a name is that it’s short. Six
letters and you’re done. And
no “for Windows” appendage
is necessary. There never was,
and never will be, a DOS ver-
sion.

Delphi is also an extraordinarily
evocative word, and it turns up
in the damnedest places. For
example, in his recently pub-
lished memoirs, Palimpsest
[Random House, 1995], Gore
Vidal tells us the eponymous
Greek city has served for him as
a sort of spiritual touchstone.

I’ve been exploring Delphi and
its meaning in history. And like
the application environment,
Delphi the word-city-idea, holds
up well under scrutiny. We
know it best as the site of the
main temple to Apollo, where in
Classical Greece, oracles revealed
enigmatic prophecy. The
Delphic oracle, always female,
spoke for Apollo in the first per-
son like a modern “channeler.”
Eventually, Delphi became the
ultimate source of approval and
advice.

It was usual to consult the
oracle at Delphi before trying
to establish a new colony. This
was not simply a religious for-
tification against unknown
dangers. Delphi had now
JANUARY 1996

attained preeminence among
all the Greek holy sites, and as
the oracle was constantly
being consulted by enquirers
from every part of the Greek
world — and indeed some-
times by ‘barbarians’ too —
the Delphic priest acquired a
great deal of information ...
not to mention considerable
political influence. — The
Greeks, H. D. F. Kitto
[Penguin Books, 1957]

Any Borlandophile has to smile
at the “barbarian” reference.
However, the best fit for the
barbarian title in this context
would be Microsoft. It’s well
established that Microsoft
wastes no opportunity to grill
anyone on the topic of Delphi.
I know of one ex-Borlander
who, once hired by a Microsoft
subsidiary, was immediately
called to a meeting where the
first question was “So what do
you know about Delphi?”

Then there is Apollo, the god
of rationality, logic, the will to
create and build. He is the
embodiment of what Camille
Paglia calls the “western eye.”
“Hierarchically tidy and task
oriented,” Apollo symbolizes
order, “elegance,” and “culti-
vated abstraction,” ideas of
Egyptian origin that reached
their zenith in Greece. He also
sounds like a good representa-
tive for Delphi, the program-
ming environment.
But there is another side to
our Greek/European/Western
culture. Paglia joins Joseph
Campbell and Friedrich
Nietzsche in selecting Apollo
as the antithesis of Dionysus.
And I’m not talking about the
popular conception of
Dionysus as a drunken wine
god, but in his true primeval
aspect as the god of abandon,
chaos, and madness. Together,
they represent the paradoxical
nature of our culture — its
extraordinary beauty, achieve-
ments, repulsiveness, and
destructiveness. I doubt that
we’ll see a software package
named Dionysus 1.0.

Apollo also stands at another
great cultural nexus, the prehis-
toric transition to male gods
from earlier female gods, in this
case Apollo over the goddesses
residing at Delphi before him.

Delphi, holiest spot of the
ancient Mediterranean, was
once dedicated to female
deities, as the priestess recalls
at the opening of Aeschylus’
Eumenides. ... The Delphic
oracle was called the Pythia
(or Pythoness) after the giant
serpent Pytho, slain by invad-
ing Apollo. ... The oracle was
Apollo’s high priestess and
spoke for him. Pilgrims, royal
and lowly, arrived at Delphi
with questions and left with
cryptic replies. — Camille
Paglia, Sexual Personae
[Vintage Books, 1990].

All of which begs the question:
Why did Borland choose
Athena’s visage to represent
Delphi? I have no idea. And
more to the point, what does
any of this have to do with
Delphi programming?
Nothing. But having interacted
with many a Delphi developer,
I know there are few who will
resent this digression into word
research. There must always be
a life away from computers
and programming, and ety-
mology is good for the soul.
Again, from Kitto’s The Greeks:

There is great significance in
the religious legend that for
three months in the year
Apollo left Delphi and
Dionysus took his place.

Yeah, Delphi is a great name.

Jerry Coffey, Editor-in-Chief

CompuServe: 70304,3633
Internet: 70304.3633@com-
puserve.com
Fax: 916-686-8497
Snail: 10519 E. Stockton
Blvd., Ste. 142, Elk Grove,
CA 95624
Delphi INFORMANT ▲ 2

JANUARY 1996

Delphi
T O O L S

New Products
and Solutions

Starfish Ships
Sidekick 95 Deluxe

Starfish Software has released
Sidekick 95 Deluxe, a multi-
media CD-ROM that includes
Sidekick 95, Dashboard 95,

America Online software, two
interactive organizational videos,
Sidekick Companions, and elec-

tronic user guides.
Sidekick 95 Deluxe is priced at

US$79.95. For more information
call (800) 765-7839.
Multi-Edit for Windows Version 7.01

American Cybernetics, Inc.

of Tempe, AZ has released
Multi-Edit for Windows, ver-
sion 7.01, an upgrade to their
programmer’s text editor. In
addition to the Hex mode
editing and ruler, this version
features new tools designed to
streamline repetitive program-
ming tasks.

The new edit-on-the-fly tem-
plate system is designed to
help developers avoid typing
frequently used code. This
allows programmers to modify
templates as they work, elimi-
nating the need to recompile
or exit the editor.

Multi-Edit features
Collapsible editing. Developers
can view selected segments of
code and collapse other sec-
tions while scanning through
large blocks of code. Multi-
Edit also supports the long
filename feature in Windows
95 and Windows NT.
Version 7.01 has back-
ground compiling (allowing
the programmer to continue
editing while a compile is in
progress), modeless
search/replace dialogs, ver-
sions support, and syntax
highlighting. In addition, the
compiler and color setup
have been enhanced.

Registered users of Multi-
Edit for Windows, version 7.0
will automatically receive an
upgrade free of charge.

Price: US$199.

Contact: American Cybernetics, 1830
W. University Drive, Suite 112, Tempe,
AZ 85281

Phone: (602) 968-1945
Fax: (602) 966-1654
E-Mail: Internet: tech@amcyber.com
Reliance’s Comment++ V1.0 for Windows

Reliance Corporation of Penn

Valley, CA has released
Comment++ V1.0 for Windows.
Software developers using
Borland’s Delphi or C++,
Microsoft’s Visual C++ or Visual
Basic, Premia Corporation’s
CodeWright, or Symantec’s C++
can use Comment++ to auto-
matically insert and maintain
comments in their source code.

Comment++ simplifies the
task of commenting source
code by eliminating the need
to recreate comment blocks
for every function, procedure,
or method in a source code
file. Instead, Comment++
uses comment templates
stored in scripts that can be
invoked and inserted directly
into the source code file with
one keystroke.

Software developers can use
the Comment++ script lan-
guage to create and layout
interactive comments that
prompt for information
before being inserted into the
source code file. The script
language, designed specifical-
ly for Comment++, allows
developers to design custom
comments.
Test drives of Comment++

can be downloaded from
Reliance Corporation’s Web site
listed below, or the Borland
C++ forum on CompuServe.

Price: US$29.95 per copy, quotes for
site licenses are available upon request.

Contact: Reliance Corporation, 18905
Hummingbird Dr., Penn Valley, CA 95946

Phone: (800) 432-2118 or
(916) 432-3285
Fax: (916) 432-4487
E-Mail: CIS: 72223,1240
Web Site: http: //www.reliancecorp.com
Delphi INFORMANT ▲ 3

JANUARY 1996

Delphi
T O O L S

New Products
and Solutions

Delphi Tools CD-ROM
Now Shipping

EMS Professional Shareware is
now shipping the November 1995
version of its Delphi Utility Library,
containing over 250 public domain

and shareware tools selected
especially for programmers.

The library includes a program
that allows users to search for a

utility by the product name, vendor,
type, release date, or description.

The Delphi Utility Library costs
US$59.50 (CD-ROM) plus ship-
ping and handling, and has a

30-day money-back guarantee.
The next update is due to ship in
February. For more information

contact EMS by phone
(301) 924-3594, e-mail Internet:
ems@wdn.com, or visit their Web
site at http://www.wdn.com/ems.
Wintertree Software Ships Sentry Spelling-Checker Engine

Wintertree Software of

Nepean, Ontario, Canada has
released a 32-bit version of the
Sentry Spelling-Checker
Engine (SSCE). SSCE is
implemented as a DLL,
enabling it to be called from
any DLL-capable language and
development environment,
including Delphi, Paradox, C,
C++, Visual Basic, Access,
FoxPro, and PowerBuilder.

SSCE has an application
program interface that allows
other applications to check the
spelling of words, locate sug-
gested replacements for mis-
spelled words, and update user
dictionaries. Redistributable
American- and British-English
dictionaries, each containing
about 100,000 words, are
included with the engine. In
addition, French, Italian,
German, and Spanish dictio-
naries are available.
The SSCE can automatically
or conditionally replace a mis-
spelled word with its correct
spelling. To support this feature,
a dictionary containing hun-
dreds of common misspellings
and their replacements is
included.

SSCE is available as 16-
and 32-bit Windows SDKs
that allow Microsoft
Windows and Windows NT
developers to add a spelling
checker to their applications.
The Windows SDKs also
include the SSCE Dialogs
DLL. SSCE is also available
in ANSI C source code form,
enabling the engine to be
used on any computer and
operating system that sup-
ports a C compiler.

Price: US$169, English version of SSCE
Windows SDK; US$199, French, Italian,
German, and Spanish versions.

Contact: Wintertree Software Inc.,
69 Beddington Ave., Nepean, Ontario,
Canada, K2J 3N4

Phone: (613) 825-6271
Fax: (613) 825-5521
Web Site: http: //fox.nstn.ca/~wsi/
Inner Media Releases Version 3 of DynaZIP

Inner Media, Inc., of

Hollis, NH has released
DynaZIP 3.0 featuring
OCX, VBX, and DLL sup-
port. With DynaZIP, devel-
opers can add the ability to
read, test, create, modify, and
write industry standard .ZIP
files to their programs —
without having to “shell out”
to a DOS session. The royal-
ty-free DynaZIP DLLs can
read and write files compati-
ble with the latest version of
PKZIP from PKWare, Inc.
Because DynaZIP has built-
in ZIP encoding and decod-
ing logic, PKZIP and
PKUNZIP are not used and
need not be present on the
target machine.

Version 3.0 is available in 16-
and 32-bit versions for
Windows, Windows 95, and
Windows NT. It includes a new
DZ_EASY interface, improved
overall speed, and increased
support for creating Windows-
hosted self-extracting .ZIP files.

DynaZIP libraries are com-
patible with various develop-
ment languages and plat-
forms, including Delphi,
Pascal, Paradox for Windows,
and more.

DynaZIP’s API provides
information about the .ZIP
file items, dual progress
monitor callback capabilities,
and comprehensive status
and error reporting.

DynaZIP also includes a
Windows .ZIP shell program
with full source code in both
C and VB, two diagnostic
test tools, a Windows help
file, coding examples, and
printed documentation.

Price: US$249 per developer station,
DynaZIP-32 is US$299. Registered owners
of DynaZIP and DynaZIP VBX can upgrade
to DynaZIP-16 for US$69, and registered
owners of DynaZIP NT can upgrade to
DynaZIP-32 for US$69.

Contact: Inner Media, Inc., 60 Plain
Road, Hollis, NH 03049

Phone: (603) 465-3216, or
(800) 962-2949 in the US
Fax: (603) 465-7195
CompuServe: 70444,31
Delphi INFORMANT ▲ 4

JANUARY 1996

News
L I N E

January 1996

EMail World & Internet Expo
Heads to San Jose

EMail World, Web World, &
Internet Expo, scheduled for

February 19-21, 1996 in San Jose,
CA, will showcase advances in

Internet, e-mail, and World Wide
Web technologies with over 500

exhibits. This year’s event has added
a new track focusing solely on the

issues of electronic publishing.
Industry experts to speak at the
conference include John Perry

Barlow, co-founder of Electronic
Frontier Foundation; Marc
Andreesen, V.P. Technology,

Netscape Communications Corp.;
John Patrick, V.P. Internet

Applications, IBM; Tim Koogle,
President and CEO, Yahoo;

and many more.
For more information, call DCI at

(508) 470-3880 or visit their Web
site at http: //www.DCIexpo.com.
Borland Displays Delphi Client/Server Suite 2.0

Las Vegas, NV — Borland

International Inc. previewed
Delphi Client/Server Suite
2.0, the 32-bit version of
Delphi Client/Server for
Windows 95 and Windows
NT, at Comdex Fall 95.

Delphi Client/Server Suite 2.0
features SQL Explorer, a visual
tool that allows team developers
to browse and modify server-
specific metadata for Oracle,
Sybase, InterBase, Informix, and
Microsoft SQL Server, includ-
ing stored procedure definitions,
triggers, and index descriptions.

Delphi Client/Server Suite 2.0
also features SQL Monitor, an
integrated tool that assists devel-
opers with testing, debugging,
and performance tuning for
SQL queries. Also provided are
SQL Links, 32-bit native drivers
for Oracle, Sybase, Informix,
InterBase, and Microsoft SQL
Server, and an unlimited
deployment license for these dri-
vers. In addition, this version of
Delphi includes Intersolv’s
PVCS Version Control.
Delphi Client/Server Suite 2.0

will also include InterBase 4.0
NT, a 32-bit version of
ReportSmith SQL, and an
expanded Open Tools API for
integrating third party CASE
tools such as LBMS’ System
Engineer, Popkin’s System
Architect, SDP Technologies’ S-
Designor, and CSA’s SilverRun.

Delphi Client/Server Suite
2.0 is scheduled for release in
the first quarter of 1996, and
will be sent as part of the
maintenance license agree-
ment for Delphi Client/Server
Team Solutions users. Pre-
release versions are available
through Borland Connections
at (800) 353-2211.

Additional information is
available on Borland’s Web site
at http://www.borland.com.
Borland to Deliver Tools for Java, Sun’s Internet
Programming Language
Scotts Valley, CA — Borland
International Inc. has
announced it will license Sun
Microsystems’ Java program-
ming language and will devel-
op tools based on the lan-
guage. This agreement, pre-
sented at the Java Conference
at Sun Microsystems, Inc.,
states that Borland will build a
rapid application development
(RAD) environment for creat-
ing Java applications. The
product, code-named Latte,
will be developed in Java.

According to Borland, Java’s
platform-independent capabil-
ity makes it an attractive dis-
tributed computing develop-
ment environment, and there
will be a need for rapid appli-
cation development tools.

Borland is planning to
release Latte in stages, with the
first commercial release sched-
uled to ship in the first half of
1996. Borland’s product devel-
opment will focus on the fol-
lowing areas: visual RAD tools
to increase productivity for
developing Internet; Web
applications; object-oriented,
component-based architec-
tures; and scaleable, distrib-
uted database access.

In addition, Netscape will
deliver the first commercial Web
products enabled by Java.
Borland Java tools customers
will be able to take advantage of
Netscape’s clients and servers as
a new platform for application
development .
To receive additional informa-

tion about Borland’s Internet
development tools, access
Borland’s new Java Web Site at
http://www.borland.com/Pro-
duct/java/java.html.
Delphi INFORMANT ▲ 5

JANUARY 1996

News
L I N E

January 1996

The DCI Data
Warehousing Conference

DCI and META Group
announced the DCI Data

Warehousing Conference is set for
February 6-8, 1996 in Orlando,

FL. At the Data Warehousing
Conference, attendees will get an
inside look at the transmutation of
1980’s-style decision support sys-
tems into GUI-driven client/server

executive information systems.
Over 50 presentations and

keynote sessions, as well as five
conference tracks are planned. For
more information visit the DCI Web
site at http: //www.DCIexpo.com.

Advanced Effective
GUI Design

Scheduled for February 1-2, 1996
in San Francisco, CA, Advanced
Effective GUI Design is a two-day

seminar taught by James Hobart, a
senior consultant with Corporate

Computing International. This class
offers tips, tricks, and helpful hints
for creating a graphical user inter-
face. In addition, attendees learn
advanced techniques for creating
GUI designs by applying rapid
application development (RAD)

techniques and implementing stan-
dards. Advanced Effective GUI

Design is priced at US$995. For
more information visit the DCI Web
site at http: //www.DCIexpo.com.
Windows 95: Over 10 Million Units Sold

Redmond, WA — Microsoft

Corp. announced sales of its
Windows 95 operating system
has surpassed 10 million units
worldwide. This figure
includes upgrades and com-
plete versions sold since the
product’s August 24 release.

Microsoft also reported
high customer satisfaction for
Windows 95. More than 91
percent of Windows 95 users
claimed to be satisfied or
very satisfied with the prod-
uct, as measured by Techscan
Inc., an independent market-
research firm.

Sales of new applications,
hardware products, and PCs
with the Designed for
Windows 95 logo are also sell-
ing well. According to PC
Data, a market research firm
specializing in the measure-
ment of software retail sales,
more than one-quarter of all
software sales revenue in the
month of September was dri-
ven by purchases of Windows
95-based products.

Adoption of Windows 95
within corporations also con-
tinues to grow. Over 160
major accounts worldwide
have signed purchase agree-
ments and put deployment
plans in place, and the majori-
ty have installed Windows 95
on at least 10 percent of their
PCs in a given geographic
area. In the United States in
particular, more than half of
Microsoft’s top 1,000 corpo-
rate accounts are in or beyond
the pilot testing phase of their
deployments for Windows 95.

Currently, Microsoft is not
planning to issue a mainte-
nance release for Windows 95.
Microsoft will keep Windows
95 users up-to-date by posting
online the latest drivers and
technology components, such
as the Service for NetWare
Directory Services, 32-bit
DLC protocol stack, ISDN
drivers, and Infrared Support.

In addition, Microsoft has
added support for Infrared
Data Association (IrDA) con-
nectivity to the Windows 95,
enabling wireless connectivity
between Windows 95-based
PCs and peripheral devices.
The IrDA support software
for Windows 95 can be
downloaded from the
Internet at no charge, and
will be included in future
versions of the Windows
operating system.

Internationally, the number
of language versions and
products designed for
Windows 95 is increasing.
Microsoft was scheduled to
release the Japanese-language
version of Windows 95 to
manufacturing in November
1995. The Japanese-language
version is the 17th of the
more than 29 localized lan-
guage editions Microsoft plans
to ship for Windows 95.

At press time, more than
400 products developed
specifically for Windows 95
have qualified for the
Designed for Windows 95
logo, including 136 software
products, 181 hardware prod-
ucts, and 130 OEM products.
Kahn Steps Down as
Borland Chairman
Scotts Valley, CA — Borland
International Inc. announced
that Philippe Kahn has
stepped down as chairman of
the board effective January 1,
1996. Mr. Kahn will continue
to serve as a member of the
board of directors. Kahn
founded Borland International
12 years ago, and has been
Chairman of the Board of
Directors since then.

“With Delphi a success, a
lower cost structure, and the
Lotus litigation largely behind
it, I feel that Borland is now
back on the right track. I am
very proud of the team at
Borland, and believe that the
company is poised for
renewed success,” Kahn said.

In 1994 Kahn co-founded
Starfish Software, and he says
he will now focus his energy
on this venture.
Acadia Software Begins Operations
in Boston Area
Boston, MA — Acadia
Software has launched its soft-
ware consulting company in the
Boston, MA area. Formerly the
Boston branch of IT Solutions,
Acadia Software became inde-
pendent from its Chicago-based
parent in October 1995.

Acadia Software specializes in
developing client/server applica-
tions, deploying distributed
database technology, and pro-
viding World Wide Web appli-
cation solutions. At the core of
these technology areas is the
principle of object-orientation.

For Windows-based software
development, Acadia Software
has targeted Borland’s Delphi
as its primary development
tool. According to Richard
Wagner, Chief Technical
Officer, Acadia selected Delphi
because it offers many of the
advantages of C++, such as an
object-oriented language and
the ability to create true binary
executables, but it allows
developers to create applica-
tions in less than half the time.
Acadia Software is a Borland
Connections partner. For more
information, call Acadia
Software at (508) 264-4881.
Delphi INFORMANT ▲ 6

JANUARY 1996

On the Cover
Delphi / Object Pascal / DDE / Excel

By Gary Entsminger

Great Journeys,
Single Steps
State of the Object Art: Part I
I t hasn’t been a long time, summer of 1988, since I sat with friends (pro-
grammers, editors, writers) in a house in the high desert of central Oregon
jamming about object-oriented programming (OOP). We were planning to

focus an upcoming issue of our magazine, Micro Cornucopia, on OOP, and at
the time it seemed a risky experiment. We were a small, 20,000 circulation,
outfit on a shoe-string budget, and knew that one or two misguided issues
could spin us into a free fall.

It was risky because we didn’t know that much about OOP yet, and OOP like Windows was-
n’t the sure bet then that it’s become in this decade. Plus, much of what we knew about OOP
was rooted in Smalltalk, but our readers were predominantly C and Pascal programmers.
Smalltalk alone as our OOP “story,” we feared, would go down like flat beer.

Yet Smalltalk had its supporters. It was, and still is, a so-called “pure” object-oriented lan-
guage, and much can be learned from its object model. In Smalltalk, everything is an object.
When you program in Smalltalk, you send messages to objects, which are instances of classes.

In ’88, this was strange talk to Pascal and C programmers. To make matters worse, Smalltalk
had been developed at a research center. Our readers were hackers, in love with everything hav-
ing to do with computers, and proud of it. So we were betting back in ’88 that hackers, being
foremost experimenters, would want to “hack” OOP languages like they hacked everything
else. So we shaped a magazine around the spirit of exploring and having fun with technology.

I’m reminiscing, not because I’m nostalgic for the good old days (I’m not), but because some-
times looking back helps us look forward. This article kicks off a new Delphi Informant series
primarily about Delphi’s object model and using Delphi’s object-oriented techniques. Objects
are key to making the most of Delphi, and in particular, knowing how Delphi’s object model
relates to other object models, especially Windows, will help you develop applications that can
manipulate and interact with other Windows objects, including applications.

As you’ll learn in this first installment, not all object models are alike. Visual Basic 4 program-
mers, for example, don’t relate to objects or create object-oriented programs the way Delphi
programmers do. Although Visual Basic makes clear claim to many things “object”: object
box, object browser, object data types, object hierarchies, object libraries, object linking and
embedding (OLE), object variables, and so on, there’s no inheritance facility in the language.
Thus, object hierarchy in Visual Basic refers to a collection of objects that contain other
Delphi INFORMANT ▲ 7

On the Cover
objects. Not so in Delphi, where a hierarchy indicates a rela-
tionship among objects that inherit properties and methods
from ancestral objects. The Visual Basic object hierarchy’s
counterpart in Delphi is something OOP purists usually refer
to as composition.

Although inheritance is a major feature of almost all OOP lan-
guages, not all OOP languages implement it consistently. For
example, C++ and Delphi share many OOP characteristics,
but they part company at inheritance. In fact, Delphi inheri-
tance more closely resembles Smalltalk’s than that of C++.

In short, OOP has matured and prospered dramatically since
’88, but approaches to thinking about and organizing objects
have remained innovative. An object is always an object
(I think), but almost everything else about how we construct
and organize applications that use objects is open for discussion.

This series, of course, focuses on Delphi’s approach to OOP
(you are reading this in the Delphi Informant, aren’t you?).
We’ll explore the Delphi object model in general, and you’ll
learn how to use Delphi applications as the glue or control for
groups of objects or applications within the Windows environ-
ment. In Windows, everything too is, effectively, an object.

Throughout this series, we’ll use OOP, DDE, OLE, DLLs,
the Windows API, and anything else that seems appropriate
to design applications of interacting objects. These objects
might reside within Delphi applications or within the
Windows system.

This first article briefly:
• recaps the history of OOP to set the stage for Delphi
• compares two currently dominant object models:

Windows/Visual Basic and Delphi
• develops a modest Delphi project that gets information

from a set of Microsoft Excel cells using DDE. Microsoft
Excel is a Windows object. Our Delphi application (also
an object) is the glue, using a form (object) and the com-
ponents (objects) it contains, including a DDE compo-
nent to interact with a Windows object.

OOP in ’88, Our Benchmark
Fortunately for us at Micro C in ’88, C++ was also beginning
to get interesting, and two other OOP languages, Actor and
Eiffel, had made recent splashes that looked promising. So we
had an issue. Jan Steinman and Barbara Yates at Tektronix
took on Smalltalk. Zack Urlocker of the Whitewater Group
explained Actor. Bruce Eckel introduced C++.

In ’88, OOP was a gold mine if you recognized it. But recogni-
tion that OOP would make it so quickly and well into the com-
puting mainstream was blocked by several reasonable obstacles.

In ’88, DOS, not Windows, was the dominant PC platform.
Windows then wasn’t even fun to use. Many of our sharpest
computing friends were insisting that Windows could never
JANUARY 1996
dominate. It was just too clunky to appeal to a sophisticated
DOS or UNIX user. And the star of the PC language arena
was “structured programming” no matter how you diced it:
into Basic (and its questionable GoTo), C, or Pascal. Neither
of these was remotely event-driven or object-oriented.

There wasn’t yet a Smalltalk or even a C++ for Windows, so
the Whitewater Group’s Actor language, designed exclusive-
ly to run within Windows, was a bold leap into a new oper-
ating environment and a new language technology (OOP).
Microsoft and Borland were still trying to best each other
at C, while companies like Tektronix, Digital Equipment,
Hewlett-Packard, and Apple were (and had been) investing
in the development of Smalltalk-80. Delphi’s ancestor,
Turbo Pascal with objects, was on the horizon, but not yet
an OOP player, and in its first form was quite different
from the current Delphi.

The path to OOP and object-based systems clearly wasn’t clear
to everyone, but two of the writers in Micro C ’s first OOP issue
were well on their way to Delphi. Consider what Zack Urlocker
and Bruce Eckel had to say about their favorite object-oriented
languages in the November-December ’88 issue.

Actor & Delphi
Zack developed a project manager in object-oriented Actor.
He wrote:

“The application was easier to develop (and understand)
using an object-oriented approach. I spent about two and a
half man-weeks conceptualizing and programming, or about
two-thirds of the time I would have spent using C, even
though I have more experience in C.”

That woke up more than a few of us.

Zack went on to say that when designing an object-oriented
application you must think of a collection of active objects that
operate on themselves. In designing an object-oriented system,
you need to focus first on determining which objects will make
up the system. In cases where there is no clear logical model for
determining these objects, you can determine the objects based
on the user interface. For example, the objects you’d use for a
spreadsheet would include the spreadsheet window and the cells.

Zack’s Project Manager consisted of a project window
(an object) that could connect to a network, handle menu
commands, and so on. He concluded:

“Object-oriented programming encourages the creation of
abstract objects with a well-defined public protocol and a pri-
vate implementation.”

The Object Pascal (and Delphi) writing was on the wall. In
particular, notice that he suggests using the user interface to
determine objects. In Delphi, every application is based on an
object-oriented user interface. Each time you create a Delphi
Delphi INFORMANT ▲ 8

On the Cover
application, you create an instance (i.e. a variable) of Delphi’s
TApplication class. Similarly, each time you add a form to an
application, you create an instance of Delphi’s built-in TForm
class. When you add a component to a form, you create an
instance of Delphi’s built-in TComponent class, or one of its
descendants.

Make sure you’re clear about the distinction between class and
object. This is a distinction that is more or less consistent
among OOP languages:
• A prototype that you use to create specific, related objects

is a class. A class is a type!
• An instance (or variable) of a class is an object. An object is

a variable!

A class is a prototype for any number of objects. A class
defines the attributes (fields, properties, events, methods)
shared by all objects created from the class.

C++ and Delphi
In the November-December issue of Micro C, Bruce devel-
oped a small CAD system in C++, which he called MicroCad.
It managed a linked list of CAD shapes. He designed the
application as a framework that our readers could add features
to. He saw an immediate OOP benefit — object-oriented
systems made it easier for many programmers to add func-
tionality to a single project through objects.

His introduction to C++ emphasized three key features of OOP:
1) abstract data typing or data encapsulation
2) type derivation or inheritance
3) commonality or polymorphism

Happily, these three features are alive and well in Delphi. The
first, data encapsulation, is common to all structured and
object-oriented programming languages. The following terms
used by various languages express data encapsulation: class,
form, module, and unit. Two main ideas underlie it:
1) data should reside in the same package (or location) as the

operations acting on them.
2) encapsulating data with code can hide information that

users and other programmers don’t need to know about.

In Delphi, a unit is the first order of data encapsulation. A unit
consists of the constants, declarations, and definitions of classes,
objects, functions, procedures, and variables that can be shared
within applications, and by more than one application. A unit
is an object and can be referenced like any other object.

All units consist of the following fundamental structure:

unit <Identifier>;

interface

uses <unit list> { Optional }

{ Public declarations }
JANUARY 1996
implementation

uses <unit list> { Optional }

{ Private declarations }

{ Implementations of procedures and functions }

initialization { Optional }

end.

The interface part of a unit determines what is visible and
accessible to any application (or other unit) using that unit.
In the interface, declare the constants, data types, variables,
procedures, and functions that other applications or units can
use. Note that the bodies (the definitions) of public proce-
dures and functions do not appear in the interface part but,
later, in the implementation part of the unit.

The implementation part of a unit holds the bodies (defini-
tions) of the procedures and functions declared in the inter-
face part of the unit. Declarations made in the implementa-
tion part of a unit are private and can be used only within
this part of the unit. However, all constants, types, variables,
procedures, and functions declared in the interface part are
visible in the implementation part.

Optionally, you can use the initialization part of a unit to ini-
tialize data for the unit.

Each application (object) consists of one or more units.

Class Declarations
You declare classes, the template for objects, in the interface
part of a unit, as follows:

unit YourUnit;

interface

type
Obj1 = class(TObject)
private

FX: Integer; { Private data field }
public { Public access methods }

function GetX: Integer;
procedure SetX;

end;

Here’s a translation of the above code. This new class, Obj1, is
a descendant of the built-in class, TObject. That means Obj1
inherits all the properties, methods (procedures and functions),
and events of its ancestor class, TObject. Whatever TObject
contains is now also contained in Obj1. In addition, Obj1 has a
new property, FX, and two new methods, GetX and SetX.

Note that by convention, properties (or fields) have an “F”
prefix. Also, by convention, fields are declared in the private
section of the class. This prevents other unwanted objects
from, perhaps inadvertently, manipulating an object’s data
fields. Each object is responsible for manipulating its own
Delphi INFORMANT ▲ 9

On the Cover

Figure 2: Objects recognized by my Windows 95 configuration.
fields. So, in the Obj1 class, two public methods are declared
to handle manipulation of the FX field. Because these meth-
ods are public, other objects can access them. The methods,
in turn, actually manipulate the field.

Note that a class shares with a unit the ability to hide imple-
mentation details and to determine what aspects of its struc-
ture is accessible to other parts of an application (other units,
other objects, and so on).

A form, too, is a class, which you (or Delphi) can declare in
the type section of a unit:

type
Form1 = class(TForm1)
private

FX,FY,FZ: Integer; { Private data fields }
public { Public access to fields }

State: Boolean; { An accessible public field }
function GetX: Integer;
procedure SetX(X: Integer);

end;

State of the Object Art:
Windows, Delphi, Visual Basic, Smalltalk, C++
The current state of “programming art” teems with objects, par-
ticularly in the visual programming arena, in languages such as
Delphi and Visual Basic. Computing on the PC in general, from
the Windows 95 operating system on up through applications
such as Paradox, Word, Visual Basic, Visual C++, and Delphi,
regardless of application particularity, depends on objects.

From a user’s perspective, objects are self-contained packages
that perform tasks. The term object is the abstraction of any-
thing on a computer screen — a window, a folder, an applica-
tion, a document, a table, a spreadsheet file. When you design
Delphi applications you can use object as your own abstraction
to make it easier to maintain consistency for users.

Objects, of course, are commonplace in Windows. Notice the
status line at the bottom of the Windows 95 folder shown in
Figure 1. The folder contains seven icons representing seven
objects. Four of these objects are shortcuts that start applica-
tions. The others are a text document, a wave file, and a folder
that contains its own collection of icons that represent objects.

Yes, although the hierarchical structure isn’t visible, the organi-
zation of folder within folder is an object hierarchy. Yet, this is
not an object hierarchy based on inheritance. Each object in
the Windows 95 model is part of a collection of objects.
JANUARY 1996

Figure 1:
Objects in a
Windows 95
folder.
Figure 2 shows another example of the Windows representa-
tion, the objects recognized by my Windows 95 configuration.

Not surprisingly, the Visual Basic 4 programming object model
is similar to that of Windows 95. In Visual Basic, you can
encapsulate data and operations in a single unit, a class module,
and you can build object hierarchies, but one object can’t
inherit data or behavior from another object. In this regard,
Visual Basic has made a major break from the traditional OOP
model of Smalltalk, C++, and Object Pascal (Delphi).

Inheritance, a Difference of Opinion
Most object-oriented languages define a single-rooted, one tree
hierarchy, also called an object-based hierarchy. This means that
all classes are ultimately inherited from the same root or base
class. So all classes in the hierarchy have a common interface. In
Object Pascal (Delphi), this common base class is TObject. All
objects in Delphi are derived from a single ancestor TObject. If
you don’t explicitly derive a new object from an existing one,
Delphi automatically derives it for you — from TObject. There
is one hierarchy for the entire Delphi system. (see Figure 3).
Figure 3: One system, one hierarchy. Delphi’s Object Browser pro-
vides a graphical representation of its object hierarchy in which all
objects share a common base class, TObject.
In Smalltalk, all objects are also derived from a single ancestor
or base class, called Object. As with Delphi, there is one hier-
archy for the entire Smalltalk system.
Delphi INFORMANT ▲ 10

of the label:

On the Cover
Note that this is not the C++ scenario, where multiple inheri-
tance is possible. In a C++ system, there can be many coexisting
(or multiple) hierarchies. From a compiler’s perspective, multiple
inheritance is hard to perform. From a programmer’s perspec-
tive, systems based on multiple inheritance are hard to design.

Delphi’s Object Model
The Delphi object model based on the class is an excellent
approach to capturing the gist of object-oriented programming
and Windows development. Everything to be known about a
class is encapsulated within its class description. Part of this
description is in the type declaration for the class in the inter-
face or visible part of a unit, and part is in the class implemen-
tation in the implementation or hidden part of a unit.

Yet a class does more than describe the attributes (i.e. the con-
straints) on a set of related objects. It also establishes relation-
ships among classes. For example, two classes can share some
attributes, but handle other attributes differently. Delphi
inheritance lets you express relationships among classes where
underlying base classes spawn more complex derived subclass-
es. A base class contains all the attributes (fields, properties,
methods, and events) that are shared among the classes derived
from the base class. Subclasses use existing shared attributes,
re-implement shared attributes, or create new attributes.

You typically create a base class to represent the core of your
ideas about the subclasses in a system. From the base class,
you derive subclasses that express the different ways that core
can be realized.

In Delphi, every built-in class and every class you create is
part of a class hierarchy. You can examine the hierarchy of
classes for any Delphi application as follows:
• Create or open a new project by selecting File | New

Project, or File | Open Project from the Delphi main menu.
• Compile the project by selecting Compile | Compile from

the Delphi main menu.
• Open the Object Browser by selecting View | Browser.

Delphi: Messages and Composition
Delphi has a one-to-one mapping between interface com-
ponents and classes. Thus, a form is represented by a class.
Each time you place a component on a form, such as a
command button, Delphi adds a member object to the
form class to represent that component. To manipulate that
component you send it messages, in traditional OOP lingo.

All the visual elements of a Delphi application are objects.
Forms are objects. Menus and menu items are objects.
Components are objects, and so on.

When an event occurs (i.e. when Windows routes the event
to your Delphi application), the element that receives the
event calls the appropriate member function (or event proce-
dure) in the form. The form owns the message handlers for all
events that can occur on itself. Thus, the form class is the focal
JANUARY 1996
point for everything that goes on in a form. This is OOP at a
very fundamental level in Delphi programming.

An event procedure that handles an event also receives the
identity of the sender (as an object). Typically, you only need
to know that an event occurred, not the identity of the sender.
For example, when a user selects a menu item, the application
directs the event message to that menu item’s event procedure.

Connecting Objects: A DDE Project
OK, that’s enough theory for an introduction. Let’s conclude
by developing a little application that uses OOP to make a
DDE connection. This project uses a Delphi application (an
object) to access a set of Microsoft Excel cells. The application
(DDEEXCEL.DPR) consists of a form that contains five
components (specialized objects).

Begin by creating a new project by selecting File | New

Project from the Delphi main menu. Delphi will automati-
cally create a form and its corresponding unit. Save the
form as DDEFORM.PAS, and save the project as DDE-
EXCEL.DPR.

Use the Delphi Component palette to add the following five
components to the form:
• from the System page: DDEClientConv and

DDEClientItem (these handle the DDE connection)
• from the Standard page: a label and two buttons (the

buttons will allow the user to control the application;
the label will receive the contents of the Excel cells)

Figure 4 shows this
form at design time.

Use the Object
Inspector to modify
three of the
DDEClientConv component’s proper-
ties as follows:
• ConnectMode: ddeAutomatic
• DDEService: Excel
• DDETopic: sheet1

Then modify the DDEClientItem
component’s properties (see Figure 5):
• DDEItem: r1c1…r3c1.
• DDEConv: DDEClientConv1

Note that once the DDE connection
is established, the DDEClientItem
component’s Text property will con-
tain the value of the item specified in
DDEItem.

Create a ButtonClick event procedure for the Connect but-
ton to set the DDE link and update the caption property

Figure 4: The example DDEform application
at design time.

Figure 5: Using
the Object Inspector
to modify the
DDEClientConv
component’s
properties.
Delphi INFORMANT ▲ 11

On the Cover

unit Ddeform;

interface

uses WinTypes, WinProcs, Classes, Graphics, Forms,
Controls, StdCtrls, DdeMan, Dialogs;

{ Excel Connection --
Establishes a DDE conversation with Excel
Reads the first three cells of sheet1
Reports results in a label
Uses TDDEClientConv and TDDEClientItem objects
to handle the DDE connection. }

type
TForm1 = class(TForm)

Button1: TButton;
Button2: TButton;
DDEClient: TDdeClientConv;
DdeClientItem1: TDdeClientItem;
Label1: TLabel;
procedure Button1Click(Sender: TObject);
procedure Button2Click(Sender: TObject);

end;

var
Form1: TForm1;

implementation
procedure TForm1.Button1Click(Sender: TObject);
begin

with DDEClientConv1 do { With object do }
if not SetLink(DDEService, DDETopic) then

MessageDlg('Link not established.',
mtInformation, [mbOK], 0)

else
Label1.Caption := DDEClientItem1.Text;

end;

Create a ButtonClick event procedure for the Exit button to
close the application:

procedure TForm1.Button2Click(Sender: TObject);
begin

Close;
end;

That’s all there is to it. Our little Delphi application (an object)
can make its connection to another application (an object),
obtain data on demand, and display the results. Of course, this is
just a beginning. Once we have the data, we can massage the
data in virtually any way we want. Figure 6 shows this applica-
tion interacting with Excel at run time. Note that Excel must
already be running to make this DDE connection.
Figure 6:
The example
application
interacting
with Excel at
run time.

Figure 7: The complete source listing for Ddeform.pas.

{$R *.DFM}

procedure TForm1.Button2Click(Sender: TObject);
begin

Close;
end;

procedure TForm1.Button1Click(Sender: TObject);
begin

with DDEClientConv1 do
if not SetLink(DDEService,DDETopic) then

MessageDlg('Link not established.',
mtInformation, [mbOK], 0)

else
Label1.Caption := DDEClientItem1.Text;

end;

end.

Gary Entsminger’s new book, The Way of Delphi, an intermediate and advanced
guide to object-oriented Delphi development, is forthcoming from Prentice-Hall.
He is currently working on a new book and trying to make the most of 32-bit
systems and the Web.
The complete code for this application is shown in Figure 7.
Notice that the project’s main and only form is a class,
derived from the Delphi TForm class. The form contains (or
is composed of) the components (objects) we added and the
two procedures (or object methods) we created.

Wrap Up
In a Delphi object-based system scenario, Delphi applications
become the glue or links for groups of interacting applica-
tions. A Delphi application “shell” connects to Excel if it
needs to manipulate data, to Word if it needs to edit, and to
other applications as it needs to. For example, using OLE
Automation you could create an Excel spreadsheet object, and
then manipulate the spreadsheet a procedure at a time by call-
ing Excel (the object) methods.

Another interesting aspect of this part of the object model is
that Delphi can access the individual procedures in these con-
nected applications. For example, a Delphi application could
use a spell checker in another application to check spelling in
a database table running in Paradox.
JANUARY 1996
Using OLE Automation, a Delphi 2 (but not a Delphi 1)
application can create an object that can be manipulated by
other OLE objects. And in turn, a Delphi object/application
(using an OLE container) can manipulate other OLE objects.
Delphi does allow programmers to create OLE containers.
OLE Automation is a 32-bit feature.

So where does this object-based world lead? To paradise?
Maybe, maybe not. In the next installment of this series, we’ll
look more closely at pros and cons and at how we can use
object-based design in Delphi to create object managers for
handling suites of tasks. ∆

The example project referenced in this article is available on the
Delphi Informant Works CD located in
INFORM\96\JAN\DI9601GE.
Delphi INFORMANT ▲ 12

JANUARY 1996

The Dynamics
of Delphi DDE
Putting the DDEClientConv
and DDEClientItem Components to Work

Informant Spotlight
Delphi / Object Pascal

By John O’Connell
D ynamic Data Exchange (DDE) is the feature of Windows that provides
the mechanism for inter-program communication between different
Windows applications. As the name implies, client and server applica-

tions can exchange data during a DDE conversation. You could say that DDE is
a “client/server” type of link between the application requesting data (the
client) from the application providing that data (the server).

A DDE server can advertise its availability via data pasted to the Windows Clipboard (although
some applications store their DDE server information in the Windows Registry). A DDE client
begins the DDE conversation by specifying the data it wants through three-character string para-
meters: the service, topic, and item.

The service is generally the name of the server application’s executable file unless otherwise
defined in the Registry. The topic is the “container” for the requested data that is the item. For
instance, the cell A4 in an Excel spreadsheet named MYSHEET.XLS is identified by the fol-
lowing DDE conversation parameters:

"Excel","MYSHEET.XLS","A4"

An application can be both a DDE client and server. Generally, if the server application isn’t
loaded, then the conversation cannot be initiated. However, some clients will attempt to
launch the server application.

Basically, DDE works by using a combination of shared global memory and Windows DDE
messages that are sent between the client and server. For instance, the server can signal to a
DDE client that the requested data is available via a specified global memory handle. These
DDE messages signal several items, including:
• the start of a DDE conversation.
• the acknowledgment/negative acknowledgment (ACK/NAK) of a previously sent DDE

message.
• the availability of a server’s data to the client.
• the actual data transfer from server to client.
• the termination of the DDE conversation.

Besides requesting data from a DDE server, the client can also send data to the server by
“poking” data into the server’s data item — data then flows from client to server. The client
Delphi INFORMANT ▲ 13

Informant Spotlight
can also execute a server’s “macro” functions which, if sup-
ported, instruct the server to perform a certain task by calling
that server’s macro functions.

By convention, individual server macro function calls are
enclosed in brackets ([]) so that multiple function calls, each
separately enclosed in brackets, can be executed by one DDE
execute message. For instance, the following DDE macro exe-
cution string that was sent to Microsoft Word for Windows as
a DDE server opens the documents named LETTER.DOC
and INVOICE.DOC:

[FileOpen("LETTER.DOC")][FileOpen("INVOICE.DOC")]

When executing a macro, only the application and topic para-
meters must be specified — the DDE item is not required.

Conversation Types
There are three types of DDE conversations:
• A hot link — the DDE data is continually updated

between the server and client.
• A cold link — the data is only transferred when requested

by the client.
• A warm link — the server informs the client that the data

has changed so the client can decide if it wants to request
the changed data.

As mentioned, the flow of data takes place through shared
global memory and is controlled by DDE messages sent
between the client and server.

Although DDE makes life easier for end-users of Windows
applications, implementing DDE in applications makes life
correspondingly difficult for the poor ol’ developer with just
the Windows API at hand.

But with Delphi, including DDE client/server capability in
your applications is made much easier thanks to the various
DDE components that are conveniently encapsulated within
the Visual Component Library (VCL). In this article I’ll discuss
the various DDE client and server components, and how to use
them with Delphi to build DDE client and server applications.

DDE Servers
Delphi’s VCL provides the TDDEServerConv and
TDDEServerItem components for creating server applications.
The TDDEServerConv defines the topic parameter of a DDE
conversation. Its OnOpen and OnClose event handlers are trig-
gered in response to DDE conversation initiation, and termi-
nation by a DDE client, respectively. The OnExecuteMacro
event handler is triggered by DDE macro execute requests.

The TDDEServerItem component defines the item parameter
of a DDE conversation and has properties that enable pro-
grammatic access to the data contained in the item. The Text
property provides access to up to 255 characters of item data.
The Lines property provides access to more than 255 charac-
JANUARY 1996
ters of item data which is represented with a TStrings object
that encapsulates multiple lines of 255 characters each. The
first string in the Lines property contains the same data as the
Text property:

Lines[0]

The OnChange and OnPokeData server item event handlers
are triggered when the item data is changed by the server and
client, respectively. (Recall that a client can poke new data
into the server item of the DDE conversation.)

You are not required to have a TDDEServerConv component
in your form to create a server application — the
TDDEServerItem will do. In such a case, the ServerConv prop-
erty is undefined and the conversation’s topic parameter is the
parent form’s caption. However, in situations when the form’s
caption will not remain constant, you must use a
TDDEServerConv component and set the TDDEServerItem’s
ServerConv property to that server conversation component. I
prefer to use a TDDEServerConv component for convenience
and greater control.

The CopyToClipBoard method of a TDDEServerItem copies
its Text and Lines property to the Clipboard, along with the
DDE link information. This information can then be interro-
gated by a DDE client application to find a DDE link’s ser-
vice, topic, and item parameters.

Appraising Property Value
Suppose we’ve built our application with DDE server capabil-
ity. How do we associate the value property of a control with
a DDE item? Obviously, we must update the DDE item’s
data as the contents of say, a TEdit (or a TMemo) changes
while the user edits the control’s contents. We can simply
assign the TEdit’s Text property to the TDDEServerItem’s Text
property. However, to associate a TMemo’s contents we must
assign the TMemo’s Lines property to the TDDEServerItem’s
Lines property. It’s that simple.

But where should such assignments occur in the code? To
update the TDDEServerItem’s data as the user edits the con-
tents of a TEdit or TMemo, simply assign the Text or Lines
properties within the OnChange event handler for the TEdit
or TMemo:

DDEServer1.Text := Edit1.Text;

...

DDEServerItem1.Lines := Memo1.Lines;

The SRVRDEMO program demonstrates the DDE server
concepts introduced so far. SRVRDEMO is a DDE server
for the records in any table that can be accessed by the
Borland Database Engine (BDE). This server allows a
DDE client to open a specified table, retrieve a particular
Delphi INFORMANT ▲ 14

Informant Spotlight
record, move to a specific record, and retrieve a field in the
current record — all from the currently opened table. This
is achieved using DDE macro execution from any DDE
client application (an example DDE client is presented
later in the article). Providing DDE macro execution in a
DDE server application requires an event handler for the
TDDEServerConv’s OnExecuteMacro event.

The OnExecuteMacro event of a TDDEServerConv has the event
sender and macro text (a TStrings object) as its parameters.
These must be interpreted and parsed by your code. The
OnExecuteMacro event handler demonstrates this (see Figure 1).
Figure 1: The OnExecuteMacro event handler.

procedure TFrmDDESrv.ParseMacro(Sender: TObject;
Msg: TStrings);

begin
{ Only want single-line macros }
if (Msg.Count > 1) then
begin

MessageDlg('Invalid macro command',
mtError,[mbOK],0);

Exit;
end;

if CompareText(Msg[0],'OpenTable') = 0 then
OpenTable { A user-defined method }

else
if CompareText(Msg[0],'GotoRecord') = 0 then

GotoRecord { A user-defined method }
else
if CompareText(Msg[0],'GetRecord') = 0 then

GetRecord { A user-defined method }
else
if CompareText(Msg[0],'GetField') = 0 then

GetField { A user-defined method }
else

MessageDlg('Unrecognised macro command',
mtError,[mbOK],0);

end;
Although this example is trivial, it does show how you can
implement the server macro functions OpenTable, GotoRecord,
GetRecord, and GetField. A more complete example of imple-
menting macro capability is demonstrated in the SRVRDE-
MO example. We’ll discuss this later in greater detail.

DDE Clients
The TDDEClientConv and TDDEClientItem components
provide the building blocks of a DDE client application. A
TDDEClientConv component defines the topic parameter of
a DDE conversation and has event handlers that are triggered
when the client conversation is successfully opened (OnOpen)
and closed (OnClose).

The DDEService and DDETopic properties define the conver-
sation’s service and topic that uniquely identify the DDE
server application. The ServiceApplication property is related
to DDEService. In some cases, a DDE service is identified by
the name of the application’s .EXE file rather than a pre-
defined service name. Therefore, ServiceApplication must be
specified instead of DDEService.
JANUARY 1996
The FormatChars property specifies the formatting of
certain non-printable characters contained in the data
received from the server. Typically, non-printable characters
(e.g. carriage returns, linefeeds, and tabs) can affect how the
data is formatted. Setting FormatChars to False generally
causes spaces to replace non-printable characters and can
cause truncation of data longer than 255 characters. Setting
FormatChars to True cures this problem as the Lines proper-
ty of the associated TDDEClientItem may be used to hold
the received data, instead of the Text property that is limited
to 255 characters. FormatChars enables newline characters
to be correctly handled.

The ConnectMode property determines when the DDE
conversation is initiated. When ConnectMode is set to
ddeAutomatic, the conversation is initiated at run time.
Obviously, for this to succeed the DDEService and
DDETopic properties must be specified and must identify a
DDE server application.

When ConnectMode is set to ddeManual, the DDE conversa-
tion is initiated only after the OpenLink method is called.
OpenLink returns a Boolean result to indicate if the DDE
link was successfully initiated. If the server application is not
already running, it will be started automatically by the
TDDEClientConv. This saves a lot of hassle when checking if
the application is already loaded as you must do when using
just the Windows API.

This leads to more TDDEClientConv methods. SetLink allows
the service and topic to be specified:

if DDEClientConv1.SetLink('WinWord','Myletter') then
ShowMessage('We have contact!');

If ConnectMode is set to ddeAutomatic, SetLink attempts to
initiate the conversation with the specified service. This
method returns a Boolean value to indicate success or failure.

The CloseLink method terminates the DDE conversation.
The RequestData method requests data from the server.
RequestData takes a DDE item name as a string and returns
the requested data as a null-terminated PChar string that is
automatically allocated memory by RequestData.

Therefore, when you’ve finished processing this PChar you
must free the memory using StrDispose. Otherwise, memo-
ry leakage will occur as more memory is allocated with
each call to RequestData, but is not released when the
application terminates. One strategy is to copy the PChar
string into a Pascal string (using the StrPas function) such
as a TEdit’s Text property and then free the PChar imme-
diately. This works only if the PChar string contains up to
255 characters — any more than this and an alternate
strategy is required. You can copy the PChar into a
TMemo’s Lines property using this code:
Delphi INFORMANT ▲ 15

Informant Spotlight
procedure TForm1.Button1Click(Sender: TObject)
var

DDEData: PChar;
begin

DDEData := DDEClientConv1.RequestData('TheItem');

if (DDEData <> nil) then
Memo1.Lines.SetText(DDEData);

StrDispose(DDEData);
end;

The SetText method applies to TStrings and TStringList
objects and copies the contents of PChar to the text buffer of
the object’s data. The Lines property of a TMemo and
TDDEServerItem is a TStrings object. Note that RequestData
doesn’t alter the data seen by a TDDEClientItem object. This
could be done with the following code:

DDEClientItem1.Lines.SetText(
DDEClientConv1.RequestData('TheItem'));

Obviously however, this code would cause memory leakage
because the PChar returned by RequestData can never be
freed. The correct way would be to separate the calls to
RequestData and SetText, and then use StrDispose to free the
PChar returned by RequestData.

As mentioned, a DDE client can poke data to a server’s
DDE item. (The TClientConv methods PokeData and
PokeDataLines enable data to be sent to the server item speci-
fied as one of the two arguments to these methods. The sec-
ond argument is the data to be sent.) For PokeData, the sec-
ond argument is a PChar, and for PokeDataLines the second
argument is a TStrings object containing a list of text strings.
Each text string has a maximum length of 255 characters.

With PokeData you’re not limited to poking data of less than
255 characters to a server item. However, when you’re poking
the contents of a TMemo (or any other TStrings/TStringList
object for that matter), PokeDataLines is more convenient to
use. The following code fragments demonstrate the use of
PokeData and PokeDataLines:

procedure SendItToTheServer;
var

SrvrData: PChar;
begin

SrvrData := StrAlloc(Ord(Edit1.Text[0]) + 1);
DDEServerConv1.PokeData("MyItem",

StrPCopy(SrvrData,Edit1.Text));
StrDispose(SrvrData);

end;

procedure LetTheServerHaveIt;
begin

DDEServerConv1.PokeDataLines("MyItem",Memo1.Lines);
end;

Note that the memory used by SrvrData was dynamically
allocated. Therefore, it must be freed using StrDispose. The
expression:

Ord(Edit1.Text[0])
JANUARY 1996
returns the length of Edit1.Text. The first byte of a string type
is a length byte (this explains why strings are limited to 255
characters), that is converted to its integer representation
using the standard Ord function.

Finally, the TDDEClientConv methods ExecuteMacro and
ExecuteMacroLines allow macro commands to be sent to the
server for execution and return a Boolean success code result.
These methods take two parameters. The first is the actual
text of the macro command(s) that is a PChar for the
ExecuteMacro method, or a TStrings for the ExecuteMacroLines
method. The second is Boolean, that if True, causes subse-
quent calls to these methods to fail and return False if the
server is processing previously issued macro function requests.
If you specify the second argument as False, then the server
application must have some way of buffering any macro exe-
cute strings that are awaiting execution.

If DDE data is already pasted to the Clipboard, the client
application can retrieve the service, topic, and item using
the GetPasteLinkInfo function. (Yes, I mean function, not
method because GetPasteLinkInfo isn’t a member of any
class. It’s a function defined in the DDEMAN unit where
Delphi’s DDE components are defined.) GetPasteLinkInfo
takes three strings as variable parameters into which this
method writes the service, topic, and item of the DDE
data currently on the Clipboard. Then it returns a Boolean
success return code of False if the service, topic, and item
cannot be obtained from the Clipboard data.

Finally we proceed to the TDDEClientItem component that
encapsulates a DDE conversation’s item. This object has no
methods, but has the DDEConv and DDEItem properties to
define the DDE topic with the Lines and Text properties to
hold the DDE data. The only event handler is OnChange that
is triggered when the server changes the DDE data in a hot
link. However, OnChange is not triggered after a call to the
TDDEClientConv.RequestData method.

The SRVRDEMO Application
Let’s take a look at the example SRVRDEMO project in
more detail, relating to our discussion. SRVRDEMO acts as a
DDE server application accessible by the BDE (see Figure 2).
It’s not intended to be an interactive database access applica-
tion. Instead, SRVRDEMO is controlled by macro functions
issued by a DDE client. These functions allow the client to
open a table, fetch a particular record in that table, move to a
specified record number, and retrieve a particular field value
from the current record. SRVRDEMO also displays the alias
and name of the currently open table.

The Memo component labeled Server Events displays a log of
the events triggered by a client, such as OnOpen, OnClose,
and OnExecuteMacro. The memo component labeled Server

Item displays the data returned by the most recent macro
execute issued by the client. Typing into this memo automat-
ically updates any client’s data as is usual in a hot link.
Delphi INFORMANT ▲ 16

Informant Spotlight

Figure 2: The example DDE server application (SRVRDEMO) at run
time.

Figure 3: The
example DDE
client applica-
tion (DDECLNT)
at run time.
For DDE client applications lacking data-access capability,
SRVRDEMO can be developed into a useful tool for access-
ing data from various data sources.

Implemented Macros
Let’s look at the implementation of the supported server
macros — OpenTable, GetRecord, GotoRecord, and GetField
(see Listing One on page 20):
• The OpenTable macro function takes a full table specifica-

tion (e.g. :Alias:TableName) as its sole parameter.
• GetRecord takes an integer parameter that identifies which

record in the table will be retrieved and then stored in the
Lines property of the TDDEServerItem component named
DDEGetRecord.

• GotoRecord takes an integer parameter, identifying which
record in the table will be updated.

• GetField takes an integer parameter to specify which field
will be retrieved from the current record and then stored
in the Text property of DDEGetRecord.

These macro functions are called in much the same way as
any function — that is, their parameters are enclosed in
brackets. Because the Msg parameter on the OnExecuteMacro
event handler holds just the strings containing the macro
request (as sent by a DDE client), the macro name and argu-
ments must be separated or parsed by code in the
OnExecuteMacro event handler.

The ParseMacroArgs event handler in SRVRDEMO does
just that. The calls to the methods GetFnName and GetArgs
extract the name and parameters of the macro function
string passed as a parameter to the handler. The extracted
macro name is compared with a number of macro names to
determine which one to execute. If the macro name isn’t
found, an error message informs the user that the specified
macro wasn’t recognized.

Notice that the Msg parameter is checked to see if more than a
single string line has been passed as a macro call. If so, then
the macro execute is rejected with an error message stating that
the specified macro is invalid — SRVRDEMO doesn’t support
multiple line macros or macros longer than 255 characters.
JANUARY 1996
The CompareText function used in the if..then expressions is
defined in the SysUtils unit. It simply performs a non-case-
sensitive comparison between the two string arguments. If
both strings match, 0 is returned.

Let’s look at the other event handlers for the DDEOpenTable
and DDEGetRecord conversation and item components:
• OnOpen and OnClose simply log the events to the

memEventLog TMemo component. (We’ve already covered
the OnExecuteMacro event handler.)

• The OnChange handler of DDEGetRecord is triggered
when the item’s data is changed and logs the event to
memEventLog with a little information about the new data.

• The OnPokeData handler, again, logs the event to
memEventLog in a fashion similar to OnChange. However,
notice the flag variable FInPoke is set to True for the dura-
tion of the event before being reset to False. This flag can
be checked in the OnChange event handler for the
memItem TMemo that displays the DDE item’s current
data. If this check wasn’t made, it’s possible that a client
poking data to the server item could conflict with a change
in the contents of the DDE item due to a user input or a
piece of code in the application. Therefore, to avoid con-
flict, the code in the OnChange handler for the memItem
TMemo checks if FInPoke is False before assigning the con-
tents of memItem to the Lines property of the
DDEGetRecord TDDEServerItem component.

The CLNTDEMO Application
This application holds a DDE client conversation with
SRVRDEMO (see Listing Two on page 22) and uses macro
execute functions to control the server (see Figure 3). The
actual DDE server data is displayed in a TMemo component
memServer. The edRecNo TEdit component is used to enter
macro function parameters used with the four macro functions
that are selectable from the Execute options radio buttons.

The FormatChars property of the ClientConv component
can be toggled using the FormatChars checkbox. The Open

and Close buttons initiate and terminate the DDE conver-
sation, respectively. The Request button calls RequestData
Delphi INFORMANT ▲ 17

Informant Spotlight
to obtain the latest server data, the Poke data button pokes
the contents of edRecNo.Text to the server item, and the
Execute button executes the selected macro function.

The OnClick event handler for the Open button sets up the ser-
vice, topic, and item parameters of the DDE client conversation:

ClientConv.ConnectMode := ddeManual;
ClientConv.SetLink('DDEART','DDEOpenTable');
ClientItem.DDEItem := 'DDEGetRecord';

if not ClientConv.OpenLink then

ShowMessage('Unable to open the link');

Notice that the ConnectMode property is set to manual and
therefore the OpenLink method must be used to initiate the
DDE link. If ConnectMode was set to ddeAutomatic, the link
would be initiated as soon as ClientItem.DDEItem was
assigned after calling SetLink.

The event handler for the Close button calls the CloseLink
method of ClientConv while the Poke data button’s handler
calls the PokeData method and passes the dynamically allocat-
ed PChar variable Buf as a parameter.

The Execute button’s handler calls the ExecuteMacro method
with a dynamically allocated PChar passed as the first parame-
ter, and the state of the Macro Wait checkbox as the second
parameter. If this second parameter is False, subsequent calls to
ExecuteMacro, ExecuteMacroLines, PokeData, or PokeDataLines
will be sent to the DDE server regardless of whether the server
is busy executing the requested macro. If this second parame-
ter was passed as True, then subsequent calls to those methods
fail and return False if the server is busy. In this case, note the
size parameter used with StrAlloc to reserve the memory for
the null-terminated string variable named Buf:

Buf := StrAlloc(Length(Cmd)+1);

When allocating memory for a PChar, you must allow for the
terminating null character that indicates the end of the string.
Therefore, to allocate sufficient space for the string variable
Cmd, we pass the length of Cmd plus 1.

The OnChange handler for the ClientItem component of type
TDDEClientItem assigns the changed contents of the DDE
item to the memSrvr TMemo:

memSrvr.Lines := ClientItem.Lines;

SRVRDEMO and CLNTDEMO Working Together
The CLNTDEMO application was designed for use with
SRVRDEMO. However, you can use any DDE-capable appli-
cation as a DDE client of SRVRDEMO. The DDECLI sam-
ple application included with Delphi is ideal, but using
CLNTDEMO involves much less typing. Using SRVRDEMO
and CLNTDEMO together can teach us a few things to watch
out for, especially when writing DDE client applications.
JANUARY 1996
For example, setting the FormatChars property can have
major effects on the way data is received from the server.
DDE server data that is longer than 255 characters will be
truncated when FormatChars is False. Newline characters in
the DDE server data are replaced with spaces when
FormatChars is False. To see this, check/uncheck the
FormatChars checkbox.

With FormatChars set to False you’ll notice that the DDE
data appears on one line of the memo with spaces between
each field value (each of these appears on separate lines of the
memo when FormatChars is True). If the data is longer than
255 characters, you’ll notice truncation of the data. Setting
FormatChars to True solves this problem and will work for
any DDE data containing formatting characters such as line
breaks. (I’ve tried this with a bookmarked paragraph of text
from Word and it works just fine.)

You may have noticed that toggling FormatChars causes the
data to be re-requested from the server automatically. Pressing
the Request button to obtain the DDE data results in the
field values being displayed one-per-line in CLNTDEMO’s
memo. The setting for FormatChars has no affect in this case
and the PChar returned by the RequestData method is used
to set the memo’s contents.

Another thing to watch for is the second (Boolean) parameter
of the ExecuteMacro and ExecuteMacroLines methods — the
state of the Macro Wait checkbox. If this is specified as True,
then the data resulting from the macro execution is not dis-
played automatically by CLNTDEMO.

However, if this “wait” parameter is specified as False, then
there’s no problem and the data is displayed as it changes at
SRVRDEMO. These situations are comparable to a DDE
cold-link and a DDE hot-link. In the first case where Wait
is True the data isn’t immediately received by the DDE
client until it’s requested, just like in a cold-link. If another
application requests data from SRVRDEMO, then CLNT-
DEMO receives the updated data immediately.

At this point you may think everything discussed in this
section of the article conveniently uses DDE between two
Delphi applications as an example. But what about non-
Delphi DDE server and client applications? I tested both
demonstration programs with Word without any prob-
lems, and what I’ve stated here about the FormatChars
property and the Wait parameter of the ExecuteMacro/-
ExecuteMacroLines all holds true. The WordBASIC pro-
gram code shown in Figure 4 uses SRVRDEMO
as a DDE server.

Brackets Are Optional
Earlier, I mentioned that macro commands are usually
enclosed in brackets to facilitate executing more than one
macro command at the server using a single DDE execute
instruction. The server can then distill this multiple macro
Delphi INFORMANT ▲ 18

Informant Spotlight

Sub MAIN
Chan = DDEInitiate("DDEART","DDEOpenTable")

If Chan <> 0 Then
MsgBox "About the get the 3rd record in the " +

"ORDERS table ..."

DDEExecute Chan,"OpenTable(:dbdemos:orders.db)"
DDEExecute Chan,"GetRecord(3)"

TheData$ = DDERequest$(Chan,"DDEGetRecord")

MsgBox "The 3rd record in the ORDERS table is: " +
Chr$(10) + TheData$

MsgBox "About to retrieve the ORDERNO field of " +
"the 10th record ..."

DDEExecute Chan,"GotoRecord(10)"
DDEExecute Chan,"GetField(1)"

TheData$ = DDERequest$(Chan,"DDEGetRecord")

MsgBox "The ORDERNO field of the 10th record is: " +
Chr$(10) + TheData$

DDETerminateAll
Else

MsgBox "Unable to open DDE conversation"
End If

End Sub

Figure 4: This WordBASIC macro uses SRVRDEMO as a DDE server.

John O’Connell is a software consultant (and born-again Pascal programmer) based in
London, specializing in the design and development of Windows database applica-
tions. Besides using Delphi for software development, he also writes applications using
Paradox for Windows and C. John has worked with Borland UK technical support on a
regular free-lance basis and can be reached at (UK) 01-81-680-6883, or on
CompuServe at 73064,74.
request into the various macro functions and execute them
in order.

However, it’s not necessary to support brackets in your
OnExecuteMacro event handler because their use is merely a
convenience. To allow your server application to handle
multiple macro functions in a single OnExectuteMacro, you
could have the client send macro functions in one line.
This eliminates having to deal with the brackets in an
OnExecuteMacro handler.

Returning to the WordBASIC macro example, we could send
the OpenTable and GetRecord macro functions to SRVRDE-
MO using the following code:

Chan = DDEInitiate("DDEART", "DDEOpenTable")
DDEExecute Chan,"OpenTable(:dbdemos:orders.db)" +

chr$(10) + "GetRecord(3)"
DDETerminateAll
JANUARY 1996
The Msg parameter in SRVRDEMO’s OnExecuteMacro event
handler would then contain the two strings in Msg[0] and
Msg[1], respectively:

"OpenTable(:dbdemos:orders.db)"

and:

"GetRecord(3)"

While the current version of SRVRDEMO will reject this
because it doesn’t like multi-line macro functions, you may
try changing this to implement managing multiple macro
function handling in the OnExecuteMacro event handler.

And what about the situation where ExecuteMacro or
ExecuteMacroLines is called with the Wait parameter passed
as False? You must then buffer any pending macro requests
to avoid the possibility that one macro is still executing
when another is received. I’ll leave such buffering as an
exercise for you.

Conclusion
A final word about DDE client applications: make sure that
your application cleans up before it closes by terminating any
open DDE client conversations. You should close all DDE
links from a form in its OnDestroy handler. ∆

The demonstration projects referenced in this article are available
on the Delphi Informant Works CD located in
INFORM\96\JAN\DI9601JO.
Delphi INFORMANT ▲ 19

Informant Spotlight
Begin Listing One — The SRVRDEMO Project

program Srvrdemo;

uses
Forms,
Getrec in 'GETREC.PAS' {FrmDDESrv};

{$R *.RES}

begin
Application.Title := 'DDE Server Demo';
Application.CreateForm(TFrmDDESrv, FrmDDESrv);
Application.Run;

end.

unit Getrec;

interface

uses
SysUtils, WinTypes, WinProcs, Messages, Classes,
Graphics, Controls, Forms, Dialogs, DdeMan, DB,
DBTables, StdCtrls, ExtCtrls, Menus;

type
TFrmDDESrv = class(TForm)

tblSource: TTable;
DDEOpenTable: TDdeServerConv;
DDEGetRecord: TDdeServerItem;
Panel1: TPanel;
edAlias: TEdit;
Label2: TLabel;
Label1: TLabel;
edTableName: TEdit;
memEventLog: TMemo;
MainMenu1: TMainMenu;
Clearlist1: TMenuItem;
Label3: TLabel;
memItem: TMemo;
Label4: TLabel;
procedure ParseMacroArgs(Sender: TObject;

Msg: TStrings);
procedure FormDestroy(Sender: TObject);
procedure DDEOpenTableClose(Sender: TObject);
procedure DDEOpenTableOpen(Sender: TObject);
procedure DDEGetRecordPokeData(Sender: TObject);
procedure DDEGetRecordChange(Sender: TObject);
procedure Clearlist1Click(Sender: TObject);
procedure memItemChange(Sender: TObject);

private
{ Private declarations }
AliasParam, TableNameParam : string[128];
FInPoke: Boolean;
procedure OpenTable(const AliasSpec,

TableSpec: string);
procedure GotoRecord(const NRecNum: LongInt);
procedure GetField(const NField: byte);
procedure GetRec(const NRecNum: LongInt);

function GetArgs(const BufStr: string): string;
function GetFnName(const BufStr: string): string;

public
{ Public declarations }

end;

var
FrmDDESrv: TFrmDDESrv;

implementation
JANUARY 1996
{$R *.DFM}

procedure TFrmDDESrv.ParseMacroArgs(Sender: TObject;
Msg: TStrings);

var
TmpAlias,
TmpName,
FnName: string[128];
ParamText: string;
InAlias: Boolean;
i, j: byte;
FnArg: LongInt;

begin
if (Msg.Count = 1) then

begin
ParamText := GetArgs(Msg[0]);
FnName := GetFnName(Msg[0]);
InAlias := False;

if CompareText('OpenTable', FnName) = 0 then
begin

TmpName := '';
TmpAlias := '';
j := Length(ParamText);
{ Scan the string to extract the alias

and table name }
for i := 1 to j do
begin

if (ParamText[i] = ':') then
begin

InAlias := not InAlias;
continue;

end;
if InAlias then

begin
TmpAlias := TmpAlias + ParamText[i];
continue;

end
else

TmpName := TmpName + ParamText[i];
end;
OpenTable(TmpAlias, TmpName);

end
else

if CompareText('GetRecord', FnName) = 0 then
begin
try

FnArg := StrToInt(ParamText);
except

MessageDlg(ParamText +
' is not a valid integer',
mtError, [mbOK], 0);

Exit;
end;
GetRec(FnArg);

end
else

if CompareText('GetField', FnName) = 0 then
begin

try
FnArg := StrToInt(ParamText);

except
MessageDlg(ParamText +

' is not a valid integer',
mtError, [mbOK], 0);

Exit;
end;

GetField(FnArg);
end
Delphi INFORMANT ▲ 20

J

Informant Spotlight
else
if CompareText('GotoRecord',FnName) = 0 then

begin
try

FnArg := StrToInt(ParamText);
except

MessageDlg(ParamText +
' is not a valid integer',
mtError, [mbOK], 0);

Exit;
end;

GotoRecord(FnArg);
end

else
MessageDlg('Unrecognised macro function ' +

FnName, mtError, [mbOK], 0);
end

else
MessageDlg('Invalid macro function call',

mtError, [mbOk], 0);
end;

procedure TFrmDDESrv.OpenTable(const AliasSpec,
TableSpec: string);

begin
edAlias.Text := AliasSpec;
edTableName.Text := TableSpec;

tblSource.Close;
tblSource.DatabaseName := AliasSpec;
tblSource.TableName := TableSpec;

try
tblSource.Open;

except
On E: Exception do MessageDlg(E.Message,mtError,

[mbOK], 0);
end;

end;

procedure TFrmDDESrv.GetField(const NField: byte);
begin

if (tblSource.Active) and
(NField <= tblSource.FieldCount) then

memItem.Text := tblSource.Fields[Pred(NField)].Text

else
MessageDlg('Unable to get field value',

mtError, [mbOK], 0);
end;

procedure TFrmDDESrv.GotoRecord(const NRecNum: LongInt);
begin

if (tblSource.Active) and
(NRecNum <= tblSource.RecordCount) then

begin
tblSource.First;
tblSource.Refresh;
tblSource.MoveBy(Pred(NRecNum));

end
else

MessageDlg('Unable to move to specified record',
mtError, [mbOk], 0);

end;

procedure TFrmDDESrv.GetRec(const NRecNum: LongInt);
var

i, j: byte;
ANUARY 1996
begin
if (tblSource.Active) and

(NRecNum <= tblSource.RecordCount) then
begin

j := Pred(tblSource.FieldCount);
DDEGetRecord.Lines.Clear; { Clear the DDE item data }

tblSource.First;
tblSource.Refresh;
tblSource.MoveBy(Pred(NRecNum));

memItem.Clear;

for i := 0 to j do
{ Write each field in the record to the memo }
memItem.Lines.Add(tblSource.Fields[i].Text);

end
else

MessageDlg('Unable to get table record',
mtError, [mbOK], 0);

end;

function TFrmDDESrv.GetArgs(const BufStr: string): string;
var

ArgStart,
ArgEnd: byte;

begin
ArgStart := 0;
ArgEnd := 0;

{ See if any brackets exist and
that they're properly closed }

ArgStart := Pos('(', BufStr);

if (ArgStart > 0) then
ArgEnd := Pos(')', BufStr);

if (ArgStart > ArgEnd) then
raise Exception.Create(

'Unable to extract function argument');

Result := Copy(BufStr, Succ(ArgStart),
ArgEnd - Succ(ArgStart));

end;

function TFrmDDESrv.GetFnName(
const BufStr: string): string;

var
OpenBracketPos: byte;

begin
OpenBracketPos := Pos('(', BufStr);

if (OpenBracketPos <= 0) then
raise Exception.Create(

'Unable to extract function name');

Result := Copy(BufStr, 1, Pred(OpenBracketPos));
end;

procedure TFrmDDESrv.FormDestroy(Sender: TObject);
begin

tblSource.Close;
end;

procedure TFrmDDESrv.DDEOpenTableClose(Sender: TObject);
begin

memEventLog.Lines.Add('Server close');
end;
Delphi INFORMANT ▲ 21

Informant Spotlight
procedure TFrmDDESrv.DDEOpenTableOpen(Sender: TObject);
begin

memEventLog.Lines.Add('Server open');
end;

procedure TFrmDDESrv.DDEGetRecordPokeData(Sender: TObject);
begin

{ This flag avoids potential conflicts }
FInPoke := True;
if (DDEGetRecord.Lines.Count > 0) then

begin
memEventLog.Lines.Add('Server data poked (' +

DDEGetRecord.Lines[0] + ')');
memItem.Lines := DDEGetRecord.Lines;

end;

FInPoke := False;
end;

procedure TFrmDDESrv.DDEGetRecordChange(Sender: TObject);
begin

if (DDEGetRecord.Lines.Count > 0) then
memEventLog.Lines.Add('Server data changed (' +

DDEGetRecord.Lines[0] + ')')
else

memEventLog.Lines.Add('Server data changed to null');
end;

procedure TFrmDDESrv.Clearlist1Click(Sender: TObject);
begin

memEventLog.Lines.Clear;
end;

procedure TFrmDDESrv.memItemChange(Sender: TObject);
begin

{ Avoid conflict with poked data }
if not FInPoke then

DDEGetRecord.Lines := memItem.Lines;
end;

end.
End Listing One
J

Begin Listing Two — The CLNTDEMO Project
program Clntdemo;

uses
Forms,
Ddeclnt in 'DDECLNT.PAS' {Form1};

{$R *.RES}

begin
Application.CreateForm(TForm1, Form1);
Application.Run;

end.

unit Ddeclnt;

interface

uses
SysUtils, WinTypes, WinProcs, Messages, Classes,
Graphics, Controls, Forms, Dialogs, StdCtrls, DdeMan,
ExtCtrls;
ANUARY 1996
const
FnList: array [0..3] of string[10] =

('OpenTable', 'GetRecord', 'GotoRecord', 'GetField');

type
TForm1 = class(TForm)

ClientConv: TDdeClientConv;
ClientItem: TDdeClientItem;

Button1: TButton;
Button2: TButton;
memSrvr: TMemo;
Button3: TButton;
Button4: TButton;
Label1: TLabel;
edRecNo: TEdit;
Label2: TLabel;
rdgExec: TRadioGroup;
Button5: TButton;
GroupBox1: TGroupBox;
CheckBox1: TCheckBox;
CheckBox2: TCheckBox;
procedure Button1Click(Sender: TObject);
procedure Button2Click(Sender: TObject);
procedure ClientItemChange(Sender: TObject);
procedure Button3Click(Sender: TObject);
procedure Button4Click(Sender: TObject);
procedure Button5Click(Sender: TObject);
procedure FormDestroy(Sender: TObject);
procedure CheckBox1Click(Sender: TObject);

private
{ Private declarations }

public
{ Public declarations }

end;

var
Form1: TForm1;

implementation

{$R *.DFM}

procedure TForm1.Button1Click(Sender: TObject);
begin

ClientConv.FormatChars := CheckBox1.Checked;
ClientConv.ConnectMode := ddeManual;
ClientConv.SetLink('SRVRDEMO', 'DDEOpenTable');
ClientItem.DDEItem := 'DDEGetRecord';

if not ClientConv.OpenLink then
ShowMessage('Unable to open the link');

end;

procedure TForm1.Button2Click(Sender: TObject);
begin

ClientConv.CloseLink;
end;

procedure TForm1.ClientItemChange(Sender: TObject);
begin

MessageBeep($FFFF);
memSrvr.Lines := ClientItem.Lines

end;

procedure TForm1.Button3Click(Sender: TObject);
var

Buf: PChar;
i: byte;
Delphi INFORMANT ▲ 22

J

Informant Spotlight
begin
i := Length(edRecNo.Text);
if (i <= 0) then

Exit;

{ Allocate memory for the null-terminated string }

Buf := StrAlloc(Succ(i));
if not ClientConv.PokeData(

'DDEGetRecord',StrPCopy(Buf,edRecNo.Text)) then

ShowMessage('PokeData failed');

{ Free memory used by Buf }

StrDispose(Buf);
end;

procedure TForm1.Button4Click(Sender: TObject);
var

Buf: PChar;
i: byte;

Cmd: string;
begin

if (Length(edRecNo.Text) <= 0) then
Exit;

Cmd := FnList[rdgExec.ItemIndex]+'('+edRecNo.Text+')';
Buf := StrAlloc(Succ(Length(Cmd)));

if not ClientConv.ExecuteMacro(StrPCopy(Buf, Cmd),
CheckBox2.Checked) then

ShowMessage('Unable to execute macro');
StrDispose(Buf); { Free memory used by Buf }

end;

procedure TForm1.Button5Click(Sender: TObject);
var

Buf: PChar;
begin

Buf := ClientConv.RequestData('DDEGetRecord');
if (Buf <> nil) then

memSrvr.SetTextBuf(Buf); { Assign the data to memo }

{This must always be done after we've
finished with the requested DDE data }

StrDispose(Buf);
end;

procedure TForm1.FormDestroy(Sender: TObject);
begin

ClientConv.CloseLink; { Tidy up }
end;

procedure TForm1.CheckBox1Click(Sender: TObject);
begin

ClientConv.FormatChars := CheckBox1.Checked;
end;

end.

End Listing Two
ANUARY 1996 Delphi INFORMANT ▲ 23

JANUARY 1996

Building a Better
MessageDlg
The Undocumented CreateMessageDialog Function

Inside Object Pascal
Delphi / Object Pascal

By Kevin J. Bluck
O ne of the primary benefits of the object-oriented programming model
is enhanced code reusability and customizability. You don’t need
objects to reuse code, however. Anybody who has ever used a run-time

library function has capitalized on the principles of code reuse. Why bother
inventing a routine to calculate a cosine when a programmer at Borland has
already gone to the trouble?

Most Delphi programmers are familiar with the MessageDlg function (and perhaps its lesser-known
brother MessageDlgPos) and use it frequently to communicate with their users. It’s a slick little rou-
tine that displays a handsomely formatted modal dialog box — neatly sized to fit the text it con-
tains. MessageDlg allows you to specify a glyph and a number of different pushbuttons to suit your
immediate needs. Available from a single-line call, it saves you from cluttering your project with
various special-use dialog boxes that otherwise must be created visually to facilitate simple commu-
nication with the user. MessageDlg is very handy indeed.

However, the MessageDlg function has a few shortcomings. Many programmers would like to
specify a caption for their dialog boxes, but MessageDlg provides no means to do this.
Furthermore, MessageDlg is silent. Many users of Delphi applications are heads-down data entry
clerks, who probably won’t see a dialog box appear and must be jolted from their industrious
typing trances by a sound. This means the programmer must always precede the MessageDlg call
with a call to the MessageBeep Windows API procedure, or another sound-generating procedure
to provide the audio cue.

Furthermore, the dialog box can always be closed by pressing J. It’s altogether too easy for users
wrapped up in data entry to enter an erroneous value, receive the error dialog box, and close it by
pressing J. They never know an error occurred. Ideally, MessageDlg would let you specify a cap-
tion, sound off automatically, and have a variant that beeps at all further keystrokes — forcing the
user to close it by some method other than pressing J.

Making these changes would be simple if the dialog box generated by MessageDlg was created visu-
ally. Changing a couple of properties and events would solve the problem. However, MessageDlg
dynamically creates and destroys the TForm object entirely within its code. Because a global vari-
able or .DFM file is not available for handling these tasks, the trick is to obtain access to a refer-
ence to the dialog box’s TForm object.
Delphi INFORMANT ▲ 24

Inside Object Pascal
Reusing Existing Code
Fortunately, Borland provides exactly what we need: a routine
that dynamically creates a message dialog box. It’s in the Dialogs
unit with the MessageDlg function, but is undocumented. Its
declaration is:

function CreateMessageDialog(
const Msg: string;
AType: TMsgDlgType;
AButtons: TMsgDlgButtons): TForm;

The CreateMessageDialog function does the dirty work of creat-
ing a TForm object, setting its properties, creating the appropri-
ate glyph for the dialog box type, setting the text and sizing the
dialog box to fit, and creating the specified buttons. MessageDlg
merely calls this function to create the dialog box, shows it
modally, frees it, and returns the modal result. A simple call to
CreateMessageDialog returns a TForm reference to the fully con-
structed dialog box — ready for customization.

First, we must duplicate the identifiers used to specify the dialog
box type and buttons so they are available throughout this unit.
(Having to include the Dialogs unit just to access these identifiers
is highly annoying.) The custom types are defined in Figure 1.

Adding the Caption and Beep
To provide the new functionality, we must declare functions to
supplant MessageDlg and MessageDlgPos. First, however, we’ll
write a custom variant of the CreateMessageDialog function to be
called by the new functions. The entire set of MsgDlg and
MsgDlgPos parameters are passed to this function, which creates
and customizes the dialog box:

function CreateMsgDlg(const Msg: string;
const Caption: string;
AType: TNewMsgDlgType;
Buttons: TNewMsgDlgButtons;
HelpCtx: LongInt;
X: Integer;
Y: Integer): TForm;

First, the CreateMsgDlg function uses the existing VCL method to
create the default MessageDlg TForm. The Result variable is, of
course, a TForm type since that is the function’s return type. No
other local variable is necessary.

Since the CreateMessageDialog function handles creating the
TForm, it’s unnecessary to call a constructor, although the TForm
JANUARY 1996

Figure 1: The custom identifiers.

type
TNewMsgDlgType = (mtWarning, mtError, mtInformation,

mtConfirmation, mtCustom);
TNewMsgDlgBtn = (mbYes, mbNo, mbOK, mbCancel, mbAbort,

mbRetry, mbIgnore, mbAll, mbHelp);
TNewMsgDlgButtons = set of TNewMsgDlgBtn;

const
mbYesNoCancel = [mbYes, mbNo, mbCancel];
mbOKCancel = [mbOK, mbCancel];
mbAbortRetryIgnore = [mbAbort, mbRetry, mbIgnore];
object must be destroyed later. Note that the AType and Buttons
parameters must be cast into the equivalent types defined in the
Dialogs unit, or a compiler “Type Mismatch” error will occur:

Result := CreateMessageDialog(Msg,TMsgDlgType(AType),
MsgDlgButtons(Buttons));

Next, CreateMsgDlg accomplishes the first of our primary objec-
tives: it sets the dialog box’s caption. (It already has the default
caption that was provided by the VCL’s CreateMessageDlg func-
tion.) If the Caption parameter is an empty string, the caption is
unchanged. Otherwise, it sets the TForm object’s Caption prop-
erty to the parameter’s value:

if Caption <> EmptyStr then
Result.Caption := Caption;

Now the function sets the dialog box’s position — which is ini-
tially centered — on the screen. If the X or Y parameters are -1,
the function leaves the dialog box centered along that axis.
Otherwise, it sets the TForm object’s Left property to X, and Top
property to Y:

if X > -1 then
Result.Left := X;

if Y > -1 then
Result.Top := Y;

Next, we’ll set the TForm object’s HelpContext property directly
from the HelpCtx parameter and make sure that it’s scaled
properly for the current screen resolution. The dialog box is
designed for a standard VGA resolution of 96 pixels per inch.
Calling the TForm’s ScaleBy method, with the actual pixels per
inch of the current screen and the normal value of 96, guaran-
tees that the dialog box appears the same size, regardless of the
user’s screen resolution:

Result.HelpContext := HelpCtx;
Result.ScaleBy(Screen.PixelsPerInch, 96);

Finally, we’ll call the API procedure MessageBeep to generate the
desired beep, according to the dialog box’s type. Using the
MB_ICON constants causes MessageBeep to play the system
sounds associated with the dialog box type in the Control Panel (if
the user has the necessary hardware and system sound enabled):

case AType of
mtWarning: MessageBeep(MB_ICONEXCLAMATION);
mtError: MessageBeep(MB_ICONSTOP);
mtInformation: MessageBeep(MB_ICONINFORMATION);
mtConfirmation: MessageBeep(MB_ICONQUESTION);

end;

The dialog box provided by the VCL’s CreateMessageDialog func-
tion is now customized for our needs. Now it’s time to implement
the MsgDlg and MsgDlgPos functions that display the dialog box.

MsgDlgPos simply passes its parameters to CreateMsgDlg to
create the dialog box, shows the dialog box modally, assigns
the modal result as the return value, and frees the dialog box
object (see Figure 2).
Delphi INFORMANT ▲ 25

Figure 2 (Top): The MsgDlgPos function.
Figure 3 (Bottom): Causing MsgDlgPos to display the dialog box
centered on-screen.

function MsgDlgPos(const Msg: string;
const Caption: string;
AType: TNewMsgDlgType;
Buttons: TNewMsgDlgButtons;
HelpCtx: LongInt;
X: Integer;
Y: Integer): TModalResult;

var
{ Handle to the dynamically created dialog box. }
Dlg: TForm;

begin
Result := 0;
try

Dlg := CreateMsgDlg(Msg, Caption, AType, Buttons,
HelpCtx, X, Y);

Result := Dlg.ShowModal;
finally

Dlg.Free;
end;

end;

function MsgDlg const Msg: string;
const Caption: string;
AType: TNewMsgDlgType;
Buttons: TNewMsgDlgButtons;
HelpCtx: LongInt): TModalResult;

begin
Result := MsgDlgPos(Msg, Caption, AType,

Buttons, HelpCtx, -1, -1);
end;

Inside Object Pascal

Figure 4: Dynamically creating and camouflaging a TEdit component.

TrapFocus := TEdit.Create(Result);
TrapFocus.Parent := Result;
TrapFocus.Name := 'TrapFocus';
TrapFocus.AutoSelect := False;
TrapFocus.BorderStyle := bsNone;
TrapFocus.Color := Result.Color;
TrapFocus.Ctl3D := False;
TrapFocus.ReadOnly := True;
TrapFocus.TabOrder := 0;
TrapFocus.Text := EmptyStr;
TrapFocus.Width := 0;
MsgDlg is even simpler. It calls MsgDlgPos with default X and Y
arguments of -1, causing MsgDlgPos to display the dialog box
centered on the screen (see Figure 3).

Making the Dialog Box Persistent
So far, we’ve accomplished two of our objectives with no great
fuss. Now, let’s implement the persistent version, which won’t
close using J and beeps at keystrokes. This promises to be
more complicated.

Preventing the dialog box from allowing J to click on the
default button might seem straightforward, but proves to be fair-
ly complex. First, we must set the default button’s Default prop-
erty to False. The problem is that we have no idea which button
is the default, nor any variable to reference it. Furthermore, in
this case, it’s not enough to disable the default button. Since the
only focusable controls in the dialog box are the buttons, by def-
inition, one of them always has focus. As some experimentation
will prove, it’s impossible to prevent a focused button from being
clicked by J using any of the key handling events, either for
the button or form. Apparently, the keystroke invokes the button
click before any event handlers are called.

The trick is to ensure that none of the pushbutton controls
begin with focus. Since they are the only focusable controls on
the form as it’s created normally, we must provide a custom con-
trol to invisibly trap the focus away from the buttons. We’ll
accomplish this in the same way the CreateMessageDlg function
JANUARY 1996
created the button controls — by dynamically creating a compo-
nent at run time and placing it on the TForm object.

The logical choice for our invisible control is a simple TEdit.
The TEdit control should be invisible to users so that they are
unaware of what’s occurring behind the scenes. The obvious
way to do this is to set the Visible property to False. However,
that defeats our purpose for placing the control by making it
incapable of receiving focus. Instead, we’ll manipulate other
properties and allow the TEdit to blend with the form’s back-
ground to be effectively invisible. Figure 4 contains the code
fragment that accomplishes the dynamic creation and camou-
flage of the TEdit.
TrapFocus is a variable of TEdit type. Recall that Result is the func-
tion’s return value, which in the case of CreatePersistentMsgDlg, is
of type TForm. First, the TEdit object is created in memory by
calling the Create constructor with the dialog box TForm object as
its owner. Setting the TEdit’s owner is important because the
owner is responsible for de-allocating its owned objects when it’s
destroyed. Our code won’t have the chance to manually destroy
the TEdit, so we’ll ensure that the TForm object does it for us.

Next, we must set the TEdit control’s Parent property to the
TForm object as well. A windowed control such as TEdit must
have a parent window assigned to it immediately after con-
struction and before doing anything else with the object.
Otherwise, a General Protection Fault will probably occur.
While the Parent property represents the Windows concept of
Parent and Child windows, the Owner property controls own-
ership of the Pascal objects representing those Windows enti-
ties. During normal visual form construction in the Delphi
IDE, the Parent property is set automatically for windowed
controls when they are dropped on the form. However, in this
case Parent must be set manually.

The remainder of the property assignments are aimed at mak-
ing the control invisible and ensuring that it has the focus
when the dialog box is shown. Note that the color of the
TEdit object is set to the form color because it’s dangerous to
assume the form will be any particular color. ReadOnly is set
to True so the control won’t accept input, and TabOrder is set
to 0 to guarantee it’s the first control in tab order. The frame
is turned off, and the width is set to 0 so that the blinking
cursor will be invisible.
Delphi INFORMANT ▲ 26

Inside Object Pascal
Eliminating J
Unfortunately, we still must eliminate the user’s ability to close
the form with J. One of the pushbuttons will probably have
its Default property set to True, which activates the button when
J is pressed (even when the button doesn’t have focus). We
must check each TBitButton object and verify that the Default
property is False. With variables referencing these objects, it
would be a simple matter. However, without them, we only have
the reference to the TForm object.

Fortunately, we still have a way to access these controls. You’ll
recall that we set the TrapFocus TEdit object’s Parent property to
the TForm object when we created it. This was also done for the
TBitButton objects when they were created. One of the effects of
assigning the Parent property is that the parent control inserts a
reference to the child control in its Controls property. The
Controls property is an array of TControl objects that are children
of the parent. The ControlCount property returns how many
controls are children of the parent.

Using these properties with a for loop, we can iterate through the
TForm’s Controls property, determine which controls are TButton
objects (or descendants of TButton, such as TBitButton) using the
run-time type information (RTTI) operator is, and set their Default
properties to False. This code fragment accomplishes this task:

for ControlCtr := 0 to (Result.ControlCount - 1) do begin
if (Result.Controls[ControlCtr] is TButton) then begin

TButton(Result.Controls[ControlCtr]).Default := False;
end;

end;

Note that Controls is a zero-based array, so its range of indexes
runs from 0 to ComponentCount - 1. In addition, its elements are
TControl objects, so they must be cast to TButton before the
Default property is accessible.

An Earful
Beeping at keystrokes is neatly accomplished by setting the
TForm object’s KeyPreview property to True and assigning a han-
dler to the OnKeyDown event. Normally, this would be a
straightforward operation. However, we are not creating a TForm
descendant as we normally do when visually designing a form.
This message dialog box is actually a TForm, so the code for the
handler must come from somewhere else.

An event handler is actually a property whose data type is a
pointer to a procedure. This procedure pointer is declared as a
specific type of procedure, and therefore, only procedures
with a given list of parameters can be assigned to a given
event. The OnKeyDown event points to a procedure of type
TKeyEvent that is declared as:

procedure(Sender: TObject;
var Key: Word;
Shift: TShiftState) of object;

The qualifier of object means the procedure must be a mem-
ber method of a class. It makes a difference because class
JANUARY 1996
methods have an “invisible” parameter passed to them — a
reference to the object instance that’s calling the method. This
is known by programmers as the Self variable. Procedures that
are not members of a class are therefore not type-compatible
with procedures that are members.

To obtain a procedure suitable for assignment to the OnKeyPress
event handler, we’ll declare a “throwaway” class descended from
TComponent that includes only a member procedure of type
TKeyEvent:

type
TKeyDownHandler = class(TComponent)
public

procedure KeyBeep(Sender: TObject;
var Key: Word;
Shift: TShiftState);

end;

The message handler procedure is quite simple. It beeps at all
keystrokes and nullifies them by setting the Key parameter to
0, except for E. Note that the user can still navigate
between the form’s focusable controls using F. This is
because Windows handles the F keystroke before it’s sub-
mitted to the form window for action:

procedure TKeyDownHandler.KeyBeep(Sender: TObject;
var Key: Word;
Shift: ShiftState);

begin
if Key <> VK_ESCAPE then begin

MessageBeep(MB_ICONEXCLAMATION);
Key := 0;

end;
end;

Since a reference to a specific instance of the class is passed to
class member procedures, an instance of the class must be
instantiated before we can safely assign the member procedure
to the TForm’s event. If an instance does not exist, the dread-
ed General Protection Fault will probably occur when the
handler is called. By setting the KeyDownHandler object’s
Owner to the TForm, we ensure that the memory allocated to
the object is freed when the TForm is freed. We also set the
TForm’s KeyPreview property to True to make sure the form
receives the keystroke before the focused control:

KeyDownHandler := TKeyDownHandler.Create(Result);
Result.OnKeyDown := KeyDownHandler.KeyBeep;
Result.KeyPreview := True;

The PersistentMsgDlgPos and PersistentMsgDlg functions are direct
echoes of the MsgDlgPos and MsgDlg functions. The
PersistentMsgDlgPos creates the dialog box’s TForm object using
the CreatePersistentMsgDlg function, shows the dialog box modal-
ly, frees it, and returns the modal result. PersistentMsgDlg merely
calls PersistentMsgDlgPos using the -1 position parameters to cen-
ter the dialog box on the screen.

For the complete listing of the MsgDlgs unit, see Listing Three
on page 28. A project that demonstrates the unit’s functions (see
Figure 5) is available on diskette or for download.
Delphi INFORMANT ▲ 27

Inside Object Pascal
Conclusion
Delphi’s extensibility is
one of its greatest advan-
tages, and you aren’t lim-
ited to merely extending
component objects. As
we’ve seen, it’s possible
to extend or replace run-time functions and procedures as well.
It’s also possible to access components and forms at run time,
enabling the developer to modify objects not known to exist at
design time. Creatively using these concepts will enable you to
produce seemingly magical effects in your applications. ∆

The MsgDlgs unit and demonstration application referenced in this
article are available on the Delphi Informant Works CD located
in INFORM\96\JAN\DI9601KB.

Figure 5: The demonstration project
makes use of the new dialog box functions.
Kevin J. Bluck is the Senior Programmer at Lender Service Bureau of America, a
real estate servicing company in Sacramento, CA, where he develops applications
using Delphi and InterBase 4.0. He can be reached on CompuServe at 74552,201,
by e-mail at KevinBluck@aol.com, or by mail at LSBOA, 555 University Ave.
#125, Sacramento, CA 95825.

Begin Listing Three — The MsgDlgs Unit
unit MsgDlgs;

interface

uses Forms;

type
TNewMsgDlgType = (mtWarning, mtError, mtInformation,

mtConfirmation, mtCustom);
TNewMsgDlgBtn = (mbYes, mbNo, mbOK, mbCancel, mbAbort,

mbRetry, mbIgnore, mbAll, mbHelp);
TNewMsgDlgButtons = set of TNewMsgDlgBtn;

const
mbYesNoCancel = [mbYes, mbNo, mbCancel];
mbOKCancel = [mbOK, mbCancel];
mbAbortRetryIgnore = [mbAbort, mbRetry, mbIgnore];

{ Dynamically creates an improved message dialog box. }
function CreateMsgDlg(const Msg: string;

const Caption: string;
AType: TNewMsgDlgType;
Buttons: TNewMsgDlgButtons;
HelpCtx: Longint;
X, Y: Integer): TForm;

{ Similar to MessageDlg. Allows caption to be specified.
Beeps automatically. }

function MsgDlg(const Msg: string;
const Caption: string;
AType: TNewMsgDlgType;
Buttons: TNewMsgDlgButtons;
HelpCtx: Longint): TModalResult;

{ Similar to MessageDlgPos. Allows caption to be specified.
Beeps automatically. }

function MsgDlgPos(const Msg: string;
const Caption: string;
AType: TNewMsgDlgType;
JANUARY 1996
Buttons: TNewMsgDlgButtons;
HelpCtx: Longint;
X, Y: Integer): TModalResult;

{ Dynamically creates a persistent message dialog. }
function CreatePersistentMsgDlg(

const Msg: string;
const Caption: string;
AType: TNewMsgDlgType;
Buttons: TNewMsgDlgButtons;
HelpCtx: Longint; X, Y: Integer): TForm;

{ Similar to MsgDlg. Enter does not close and beeps
at all keystrokes. For head-down data entry where
user may not be paying attention to the screen. }

function PersistentMsgDlg(
const Msg: string; const Caption: string;
AType: TNewMsgDlgType; Buttons: TNewMsgDlgButtons;
HelpCtx: Longint): TModalResult;

{ Similar to MsgDlgPos. Enter does not close and beeps
at all keystrokes. For head-down data entry where user
may not be paying attention to the screen. }

function PersistentMsgDlgPos(
const Msg: string; const Caption: string;
AType: TNewMsgDlgType; Buttons: TNewMsgDlgButtons;
HelpCtx: Longint; X, Y: Integer): TModalResult;

implementation

uses
SysUtils, Classes, Graphics, StdCtrls, Dialogs,
WinProcs, WinTypes;

{ ***** Message Dialog Methods ***** }

{ Dynamically creates an improved message dialog box. }
function CreateMsgDlg(const Msg: string;

const Caption: string;
AType: TNewMsgDlgType;
Buttons: TNewMsgDlgButtons;
HelpCtx: Longint;
X, Y: Integer): TForm;

begin
{ Use the existing VCL method to dynamically create a

MessageDlg. }
Result := CreateMessageDialog(Msg,

TMsgDlgType(AType),
TMsgDlgButtons(Buttons));

{ If user specified a caption, set the dialog box's
caption. }

if Caption <> EmptyStr then begin
Result.Caption := Caption;

end; { if }

{ Set the dialog's position on screen. }
if X > -1 then begin

Result.Left := X;
end; { if }
if Y > -1 then begin

Result.Top := Y;
end; { if }

{ Set the help context and ensure correct video
scaling. }

Result.HelpContext := HelpCtx;
Result.ScaleBy(Screen.PixelsPerInch, 96);

{ Beep. Show the dialog modally and return the
ModalResult. }

case AType of
mtWarning: MessageBeep(MB_ICONEXCLAMATION);
Delphi INFORMANT ▲ 28

Inside Object Pascal
mtError: MessageBeep(MB_ICONSTOP);
mtInformation: MessageBeep(MB_ICONINFORMATION);
mtConfirmation: MessageBeep(MB_ICONQUESTION);

end;
end;

{ Similar to MessageDlgPos. Allows caption to be
specified. }

function MsgDlgPos(const Msg: string;
const Caption: string;
AType: TNewMsgDlgType;
Buttons: TNewMsgDlgButtons;
HelpCtx: Longint;
X, Y: Integer): TModalResult;

var
Dlg: TForm; { Handle to the dynamically created

dialog box. }
begin

Result := 0;
try

{ Create message dialog box and show it, returning
the modal result. }

Dlg := CreateMsgDlg(Msg, Caption, AType, Buttons,
HelpCtx, X, Y);

Result := Dlg.ShowModal;
{ Ensure dialog memory is freed. }
finally

Dlg.Free;
end; { finally }

end;

{Similar to MessageDlg. Allows caption to be specified.}

function MsgDlg(const Msg: string;
const Caption: string;
AType: TNewMsgDlgType;
Buttons: TNewMsgDlgButtons;
HelpCtx: Longint): TModalResult;

begin
{ Calls MsgDlgPos with default position arguments. }
Result := MsgDlgPos(Msg, Caption, AType, Buttons,

HelpCtx, -1, -1);
end;

{ ***** Persistent Message Dialog methods ***** }

{ Provides an object to provide a method of type
TKeyEvent (an Of Object method type) to assign to
the persistent message dialog.}

type
TKeyDownHandler = class(TComponent)
public

procedure KeyBeep(Sender: TObject;
var Key: Word;
Shift: TShiftState);

end;

{ Method of type TKeyEvent for assigning to the
persistent message dialog's OnKeyDown event.
Beeps at all keystrokes except the Escape key.}

procedure TKeyDownHandler.KeyBeep(Sender: TObject;
var Key: Word;
Shift: TShiftState);

begin
if Key <> VK_ESCAPE then begin

MessageBeep(MB_ICONEXCLAMATION);
Key := 0;

end; { if }
end;

{ Dynamically creates a persistent message dialog box. }
function CreatePersistentMsgDlg(

const Msg: string; const Caption: string;
JANUARY 1996
AType: TNewMsgDlgType; Buttons: TNewMsgDlgButtons;

HelpCtx: Longint; X, Y: Integer): TForm;
var

{ Dummy object to provide an OnKeyDown handler. }
KeyDownHandler: TKeyDownHandler;
{ A TEdit control to trap focus away from the

pushbuttons.}
TrapFocus: TEdit;
{ Counter to iterate through dialog's controls. }
ControlCtr: Integer;

begin
{ Dynamically create an improved MsgDlg. }
Result := CreateMsgDlg(Msg, Caption, AType, Buttons,

HelpCtx, X, Y);

{ Create an invisible TEdit control that will
trap focus away from the pushbuttons so that
Return and Space will not click them.}

TrapFocus := TEdit.Create(Result);
TrapFocus.Parent := Result;
TrapFocus.Name := 'TrapFocus';
TrapFocus.AutoSelect := False;
TrapFocus.BorderStyle := bsNone;
TrapFocus.Color := Result.Color;
TrapFocus.Ctl3D := False;
TrapFocus.ReadOnly := True;
TrapFocus.TabOrder := 0;
TrapFocus.Text := EmptyStr;
TrapFocus.Width := 0;
{ Create an instance of the KeyDownHandler object

with the dialog box as owner to ensure that the
KeyDownHandler object will be freed along with the
dialog box. Set the dialog's OnKeyDown handler to
point to the KeyDownHandler object's KeyBeep
method. Also set the form to preview keystrokes.}

KeyDownHandler := TKeyDownHandler.Create(Result);
Result.OnKeyDown := KeyDownHandler.KeyBeep;
Result.KeyPreview := True;

{ Iterate through form's controls. Ensure every
pushbutton's Default property is set to False
to prevent the Return key from closing the
dialog box.}

for ControlCtr :=
0 to (Result.ControlCount - 1) do begin

if (
Result.Controls[ControlCtr] is TButton) then begin

TButton(
Result.Controls[ControlCtr]).Default :=

False;
end; { if }

end; { for }
end;

{ Similar to MsgDlgPos. Enter does not close and beeps
at all keystrokes. For head-down data entry where user
may not be paying attention to the screen.}

function PersistentMsgDlgPos(
const Msg: string; const Caption: string;
AType: TNewMsgDlgType; Buttons: TNewMsgDlgButtons;
HelpCtx: Longint; X, Y: Integer): TModalResult;

var
{ Handle to the dynamically created dialog. }
Dlg: TForm;

begin
Result := 0;
try

{ Dynamically create the persistent message
dialog box. }

Dlg := CreatePersistentMsgDlg(Msg, Caption,
AType, Buttons,
HelpCtx, X, Y);

{ Show dialog box and return modal result. }
Result := Dlg.ShowModal;
Delphi INFORMANT ▲ 29

Inside Object Pascal
{ Ensure dialog box's allocated memory is freed. }
finally

Dlg.Free;
end; { finally }

end;

{ Similar to MsgDlg. Enter does not close and beeps
at all keystrokes. For head-down data entry where
user may not be paying attention to the screen.}

function PersistentMsgDlg(
const Msg: string; const Caption: string;
AType: TNewMsgDlgType; Buttons: TNewMsgDlgButtons;
HelpCtx: Longint): TModalResult;

begin
{ Calls PersistentMsgDlgPos with default position arguments.}
Result := PersistentMsgDlgPos(Msg, Caption,

AType, Buttons,
HelpCtx, -1, -1);

end;
end.

End Listing Three
JANUARY 1996 Delphi INFORMANT ▲ 30

JANUARY 1996

Filtering Tables: Part I
Displaying Selected Information in a

Delphi Database Application

DBNavigator
Delphi / Object Pascal / BDE / Paradox Tables

By Cary Jensen, Ph.D.
W hen providing information to the user, there are times when you
may want to display only some of the records from a table. For
example, while you might have a table that contains one record for

each item purchased by each customer, you may only want to display those
items bought by a particular customer on a given date.

This month’s “DBNavigator” is the first of two articles that examine how you can display a subset
of a table’s records. In this installment, two techniques that employ the Table component are con-
sidered: linked tables and table ranges. Next month, we’ll discuss a technique that employs the
Query component.

Let’s begin by considering why it’s sometimes necessary to display less than all of a table’s records.

Less Is More
Most of the databases that you create with Delphi are relational. In a relational database, the data
is stored in more than one table, a table being a file that holds data in a structured format. For
example, while a sales database may include a main table whose fields identify the individual items
purchased, there are often many support tables. For instance, there are probably tables that hold
information about the invoice under which the individual items were purchased; current cus-
tomers who can buy items; employees who can write up sales; product vendors; available product
lines; products on order; and so forth.

While many tables are used, they are not independent. For example, the main sales table that contains
the items purchased usually includes an invoice number, or some other value that is assigned to all items
purchased by the same customer during an order. This same invoice number can also be found in the
invoice table, which holds the specifics of the sales transaction, including a customer ID that identifies
the customer making the purchase; an employee ID identifying the employee responsible for the sale;
the date of the sale; etc. Furthermore, the customer number found in the invoice table corresponds to a
customer number in the customer table. This table holds information unique to the customer, such as
their mailing address, billing address, line of credit, and any other pertinent information.

In other words, the tables of the database are “related.” This relation is based on the correspondence
of data between tables. For example, the main sales table is related to the invoice table based on the
invoice number field; the invoice table is related to the customer table based on the customer field;
the main sales table is related to the product table based on a product number field; and so forth.
Delphi INFORMANT ▲ 31

DBNavigator

Figure 2:
The first
screen
of the
Database
Form
Expert.
In the preceding example, the tables are related by a single
field, but this is not always the case. In some instances tables
are related by two or more fields. For example, in a course
enrollment database, two or more instances of a course offered
in a specific term can be distinguished by three pieces of infor-
mation: the term identifier (semester/year), course number, and
section number. A table designed to hold student course credits
would need to include all three of these fields, and therefore
can be linked to the course table by means of these three fields.

Displaying Linked Tables
Using a Table component, there are two basic techniques that you
can use to limit the records. The first involves using linked tables.
When two tables are linked, the records available within one table
— the detail — are limited to those that match the current
record in another table — the master — based on the linked
fields. An example of a form using linked tables is shown in
Figure 1. Notice that only those records matching the Customer
number in the Customer table are displayed in the Orders table.
Figure 1: A form that uses linked tables.

Figure 3: The basic components for creating a linked form.
The easiest way to create linked tables is to use the Database
Form Expert, shown in Figure 2. There are two ways to access it.
First, you can select Help | Database Form Expert from Delphi’s
main menu. Second, if you have enabled the Gallery for use with
forms, select the Database Form expert from the Experts page of
the Form Gallery after selecting File | New Form. (You can enable
the Gallery for use with new forms by checking the Use on New

Form option in the Gallery group on the Preferences page of the
Environment Options dialog box.)

Once the Database Form Expert is loaded, enable Create a mas-

ter/detail form in the Form Options group on the first page of this
dialog box. The expert will then guide you through the process
of selecting the master and detail tables, and identifying the
fields upon which the link is based.

While the Database Form Expert simplifies the process of creat-
ing a form with linked tables, you can best understand how
linked tables work by creating an example from scratch. The
form in Figure 1 was built using linked tables. Use the following
steps to produce this form.
JANUARY 1996
Begin by creating a new project. On the new form place two
DataSource components, two Table components, two DBGrids,
and two Label components. When you are done, your form
should resemble Figure 3.

Set the Caption property of Label1 to &Customer:, and its
FocusControl property to DBGrid1. Set the Caption property of
Label2 to &Orders:, and its FocusControl to DBGrid2. Establishing
this relationship allows Delphi to connect the hot key shortcut
defined in the label (i.e. &Customer:) with its associated grid com-
ponent. Therefore, when the user presses AC, Label1 will “catch”
the hot key and transfer focus to the component defined in its
FocusControl property — in this case Grid1.

Set the Caption property of Form1 to Linked Table
Demonstration.

Now, set the DataSet property of DataSource1 to Table1 and set
the DataSet property of DataSource2 to Table2. Next, set the
DataSource property of DBGrid1 to DataSource1, and the
DataSource property of DBGrid2 to DataSource2.

With Table1, set DatabaseName to DBDEMOS (the alias defined by
the Delphi installation program), TableName to CUSTOMER.DB,
and Active to True. With Table2, set DatabaseName to DBDEMOS,
TableName to ORDERS.DB, and Active to True.

At this point you have a form that resembles the one in Figure 4.
Note that although this form does show data from both the
Delphi INFORMANT ▲ 32

Figure 4: The two tables in this figure are not linked. Notice that
the Orders table records are not limited to the currently displayed
record in the Customer table.

DBNavigator

Figure 5: Use the Field Link Designer to select the field pairs that
form the link between the detail and master tables.
Customer and Orders tables, all the records of both tables are

visible (or would be if you scrolled the tables). To limit the dis-
play of the records in the Orders table to those associated only
with the currently selected customer, it’s necessary to link the
Orders table to the Customer table.

Vital Links
Linking Table2 to Table1 requires three steps. First, you must
ensure that the current table index contains the field or fields
that are associated with the link. In this example, the Orders
table must be linked to the Customer table based on the
CustNo field. Since the default index (the primary index) of the
Orders table is not based on the CustNo field, you must select a
secondary index for the Orders table that is based on this field.
To do this, set the IndexName property of Table2 to CustNo.

(It’s important to note that the CustNo secondary index exists
because it was created by whoever built the sample tables —
Paradox tables in this case — for Delphi. Usually, you are
required to actually create an appropriate secondary index for a
table before you can link it. While this can be done using
Object Pascal code, it’s more convenient to create this index
interactively using the Database Desktop, a separate application
that is installed with Delphi. From the Database Desktop,
select Utilities | Restructure. From the Restructure dialog box
select Secondary Indexes from the Table Properties combobox,
and then click the Define button. Use the displayed dialog box
to create a secondary index.)

The second step in creating linked tables is to set the
MasterSource property of your detail table to the DataSource
associated with the master table. In this example, set Table2’s
MasterSource property to DataSource1.

Finally, you must define the linked fields — the fields upon
which the detail and master tables are linked. The easiest way
to do this is with the Field Link Designer. This is the property
editor for the detail table’s MasterFields property. With Table2
selected, select the MasterFields property in the Object
JANUARY 1996
Inspector and click the ... button to display the Field Link
Designer (see Figure 5).

In this dialog box, select the first field of the current detail
table index from the Detail Fields list, select the master table’s
corresponding field from the Master Fields list, and then click
the Add button. The linked field pairs are now displayed in the
Joined Fields list, and the selected fields are removed from their
respective lists, as shown in Figure 6. If the detail table index
consists of more than one field, repeat this process for each of
the index’s remaining fields. (Notice the Field Link Designer
also contains an Available Indexes combobox for setting or
changing the detail table index that is the basis for the link.)

Once you accept the Field Link Designer, you’ll notice that
DBGrid2 will display records from only one customer — the
customer currently selected in DBGrid1. The form is now com-
plete. Run it to display the form shown in Figure 1.

A few final comments about linked tables are in order. First, the
master table in this example employs a DBGrid. While this pro-
duced a useful interface, you can also display the master table in
a single-record interface by using DBEdit components and other
single-record data-aware controls. In fact, if you create a linked
master-detail form using the Database Form Expert, this is pre-
cisely the type of form you’ll produce.

It’s important to note that you can also benefit from linked
tables in cases when no data-aware controls are used. Specifically,
you may want to produce linked tables for background opera-
tions where the user does not view or interact with the tables
being manipulated.

To do this, your form only requires two Table components —
one for the master table and one for the detail table. In addition,
you have to add one DataSource. It must point to the Table com-
ponent for the master table, and the detail table’s MasterSource
Delphi INFORMANT ▲ 33

DBNavigator

Figure 6: The Field
Link Designer show-
ing the CustNo field
link between the
detail and master
tables.
property will point to the DataSource. This is, in fact, the only
situation I am aware of where a DataSource component is neces-
sary in the absence of data-aware controls. Typically, the purpose
of a DataSource component is to provide an interface between a
DataSet descendant and data-aware controls.

Finally, while these linked tables were defined during design time,
it’s also possible to produce linked tables at run time. Similar to
the design time process, this requires assigning values to the
MasterSource, IndexName (or alternatively IndexFields), and
MasterFields properties. The main difference is that you do not use
the Field Link Designer to assign a value to the MasterFields prop-
erty at run time. (See the online help reference for the MasterFields
property for an example of assigning values to it at run time.)

Using Ranges
While linked tables are useful, there are times when you may
want to restrict the display of records in a table to a subset of
records. However, the database does not include a master table
for this purpose. For example, imagine that you want to display
records only for those customers living in a particular city. If you
do not have a table that includes all possible cities of residence,
linked tables are not an option.

The Table component encapsulates a feature of the Borland
Database Engine (BDE) that permits you to define ranges of
records for display. A range, when applied, restricts the display of
data to those records that lie within the range.

When applying a range, you define the lowest and highest value
in a field, or set of fields. For example, let’s say you want to dis-
play only those customer records where the credit limit is $1,000
or less. To do so, you identify the beginning of the range (the
lowest value) as 0, and the end of the range (the highest value) as
1,000. When applied, only those records where the credit limit
lies inclusively within the specified range are displayed.

Ranges can also be used to display exact matches. To display
records for a customer whose mailing address is a particular city,
New York for example, you can set the beginning and end of the
range to the same value.

There is one requirement for using ranges: the table you want to
apply the range to must be indexed on the field (or fields) used
for the range. Consequently, to apply a range based on a cus-
JANUARY 1996
tomer’s credit limit, there must be at least one index where credit
limit is the first field in the index. Likewise, a city-based range
requires at least one index where city is the first index field.

Ranges are not limited, however, to single fields. You can also
create a range that defines starting and ending values for two or
more fields. Of course, this requires that the table you are apply-
ing the range to has an index that includes those fields as the
first fields in the index.

For example, to see the list of all students enrolled in a particular
course during a specific term, regardless of section number, you
can assign the same term value as both the starting and ending
range on the term field, and the same course number as the
starting and ending range on the course number field. Provided
there is an index that has term and course number as the index’s
first fields, this range is acceptable. Specifically, you can use an
index that is based on term, course number, and section number,
even though no range on section number is defined.

You have two options when it comes to applying a range. The
first and easiest to use is the SetRange method. It has the fol-
lowing syntax:

procedure SetRange(const StartValues, EndValues: array of const)

Both arrays that are passed as parameters must have the same num-
ber of elements. The value in the first element of the first array cor-
responds to the beginning (or lowest value) for the range on the
first field of the index. The value in the second element, if provid-
ed, identifies the lowest value for the range on the second field of
the index, and so on. The elements of the second array identify the
ending, or highest values of the range for each field, with the first
element corresponding to the first field in the index; the second, if
provided, for the second field in the index, and so on.

The following demonstrates how SetRange can be used. Assume
that Table1 is a component defined for a table named
CLIENTS.DB. Furthermore, assume this table has an index
named CityIndex that is a single field index on the City field of
CLIENTS.DB. This statement:

Table1.IndexName := 'CityOrder';

Table1.SetRange(['New York'],['New York']);

sets the IndexName property to CityIndex, and then sets a range
to display only those clients whose records contain New York in
the City field.

To set a range based on a multi-field index, include more than
one set of starting and ending values in the array parameters. For
example, if you have a table named Invoices and it uses an index
based on the fields CustNo and InvoiceDate, the following state-
ment will display all records for customer C1573 for the dates
12/1/95 through 2/1/96:

Table1.SetRange(['C1573','12/1/95'],['C1573','2/1/96']);
Delphi INFORMANT ▲ 34

DBNavigator

procedure TForm1.Button1Click(Sender: TObject);
begin

if Button1.Caption = '&Apply Range' then
begin

Table1.SetRange([Edit1.Text],[Edit2.Text]);
Button1.Caption := '&Drop Range';

end
else

begin
Table1.CancelRange;
Table1.Refresh;
Button1.Caption := '&Apply Range';

end;
end;

Figure 8 (Top): The OnClick event handler for Button1. Figure 9
(Bottom): A range limiting display of records to those companies
whose names begin with A through C has been applied to the table.
Using ApplyRange
There is an alternative, albeit a more involved one, to using
SetRange. You can use the SetRangeStart, SetRangeEnd, and
ApplyRange methods to select a range. While these statements
also require an index (either primary or secondary), it permits
fields to be explicitly assigned their starting and ending range
values without using an array. The following example defines the
same range as that demonstrated in the preceding listing:

Table1.SetRangeStart;
Table1.FieldByName('CustNo').AsString := 'C1573';
Table1.FieldByName('InvoiceDate').AsString := '12/1/95';
Table1.SetRangeEnd;
Table1.FieldByName('CustNo').AsString := 'C1573';
Table1.FieldByName('InvoiceDate').AsString := '2/1/96';
Table1.ApplyRange;

Removing a range is much easier than applying one. To remove a
range, use the CancelRange method. Here is its syntax:

TableName.CancelRange;

Range Example
Use the following steps to create a project that demonstrates set-
ting a range for a table.

Create a new project and on the new form, place two Labels,
two Edits, a DataSource, Table, DBGrid, and Button. Your form
should now resemble Figure 7.

Set the Caption property of Label1 to &Start Range:, and its
FocusControl property to Edit1. Next, set the Caption property of
Label2 to &End Range:, and its FocusControl property to Edit2.

Set the Caption property of Form1 to Range Demonstration.
Select Edit1 and erase its Text property. Do the same for Edit2.

Select DataSource1 and set its DataSet property to Table1. Select
Table1 and set its DatabaseName property to DBDEMOS, its
TableName property to CUSTOMER.DB, and its Active property to
True. Since the range in this example will be defined for the
Company field, set Table1’s IndexName property to ByCompany.

Select the DBGrid and set its DataSource property to
DataSource1. Finally, select Button1 and set its Caption proper-
ty to &Apply Range. You have now set all necessary properties.
JANUARY 1996

Figure 7:
The basic
components of
the Range
Demonstration
form.
Finally, define the event handler for Button1’s OnClick event
property. To do this, double-click Button1 to create an event
handler. Now enter the code shown in Figure 8.

This completes the project. Press 9 to run it. Enter the letter
A in the Start Range field, and the letter C in the End Range field.
(Note that the range is case-sensitive only if a case-sensitive
index is used. In this case, the index is not case-sensitive.) Click
on Apply Range to apply the range. Now, only those companies
whose names begin with A and B will be displayed, as shown in
Figure 9. To remove the range, click on the Drop Range button.

Conclusion
Using linked tables and ranges, you can control which records
are displayed in a table. While using these features requires some
planning — for example, the creation of secondary indexes —
they provide your applications with a wide range of display
options and useful features. ∆

The demonstration projects referenced in this article are available on the
Delphi Informant Works CD located in INFORM\96\JAN\DI9601CJ.
Delphi INFORMANT ▲ 35

Cary Jensen is President of Jensen Data Systems, Inc., a Houston-based data-
base development company. He is author of more than a dozen books, and is
Contributing Editor of Paradox Informant and Delphi Informant. Cary is this
year’s Chairperson of the Paradox Advisory Board for the upcoming Borland
Developers Conference. He has a Ph.D. in Human Factors Psychology, specializ-
ing in human-computer interaction. You can reach Jensen Data Systems at
(713) 359-3311, or through CompuServe at 76307,1533.

Borland Online

On the Net
BY Carol Boosembark

Figure 2: Here’s your chance to get
involved in the next Borland Conference.
F or the experienced Web
walker, Borland Online is a
welcome site. This Web

page is easy to understand, and
finding information is a breeze. If
you’re new to the World Wide
Web, Borland Online is a great
place to start learning about what
can be found on the Internet.

This month we’ll visit Borland Online
and discuss a few of its features. To
begin, point your browser to
http://www.borland.com (see Figure 1).
This first page gives you a variety of
options including a text version of the
Web page, Borland news and informa-
tion, special programs and services,
technical and product information, a
listing of Borland Worldwide offices, a
table of contents, and much more.
JANUARY 1996

Figure 1: Borland Online at
http://www.borland.com. Carol Boosembark is Products Editor for Delphi Informant.
If you’re looking for information about the
7th Annual Borland Developers
Conference, visit http://www.borland.com-
/ProgServ/events/bdc96/call4p.htm (see
Figure 2). There you’ll find the event will
be held in southern California, between
July 27 and August 14, 1996. (The site and
specific dates will be available soon.) You
can contact Christine Sherman, Chairman
of the Conference Advisory Board, directly
from this page. (You can also reach her at
csherman@wpo.borland.com, or via
CompuServe at 76067,507).

Additionally, this page has links to a listing
of Advisory Board contacts, a conference
deliverables schedule, author information, as
well as information about presentations,
conference tracks, and more.

For the application developer, Borland
Online offers The Legal Toolbox. Hosted by
Bob Kohn, Senior Vice President & General
Counsel for Borland, this page features eight
topics: Copyrights, Patents, Trademarks,
Trade Secrets, Contracts, Insurance, Articles,
and Lawsuits. There’s a complete transcript
of the US Court of Appeals decision in the
Lotus v. Borland case located on the
Lawsuits page. And the most entertaining
page, by far, is at http://www.borland.com/-
ProgServ/US/legal/jokes.html. It’s a must see.

Turning to recent additions, Borland Online
premiered Java World, a Web site for Java
developers last November. Located at
http://www.borland.com/Product/java/-
java.html, Java World features a Java World
Subscription (e-mail messages for keeping
current on updates to Java World), a Java
Survey, related Java press releases, and Java
on the Net, a listing of over 20 Java sites.
(For related Borland information see
“Borland to Deliver Tools for Java, Sun’s
Internet Programming Language” in
Newsline, page 5.)

There are many other Borland-related Web
sites. In the coming installments, we’ll cover
these, from Borland’s latest ventures to the
many “unofficial” Borland Web sites created
by independent developers and vendors. If
you have a great Web site to recommend,
feel free to send me e-mail at
75702.1274@compuserve.com. ∆

Due to the flexible nature of the Internet, all
Web sites mentioned may have changed. If a
Web page address has changed, a new link is
usually left at the old address to guide you.
Delphi INFORMANT ▲ 36

JA

Web Site of the Month

Figure A: The Imagicom Software Component Resource Web page.

Figure B: A listing of VCL controls.

On the Net
If you’re looking for a specific software component, your best bet
is to visit Imagicom Software Component Resource at
http://www.xmission.com-/~imagicom/ (see Figure A). This Web
site categorizes software components, making research quick and
easy. Currently on Imagicom, you can search by component type
(edits, listboxes, grids, image manipulation, etc.), file type (DLL,
OCX, VBX, VCL, etc.), or vendor.

Once you’ve selected a search type, Imagicom produces a Web
page listing the appropriate components (see Figure B). Each
component name is listed with its company name, a link to
its company information, a description that may include
compatible platforms, and pricing information. If available, a
demonstration version of the product, a custom e-mail page
for the vendor, and a custom order page for the product are
linked to the description. Additionally, some components
have full page advertisement links for online viewing.

At press time, Imagicom Software Component Resource had a
total of 42,497 visitors to its Web page. Its most popular index
searches are conducted on:
• VCL Delphi

(695 Total)

• Uncategorized Delphi Add-Ons (508 Total)

• OCX (733 Total)

• Communication and Telephony (930 Total)

• VBX (2975 Total)

In addition to its indexing abilities, Imagicom provides a
comprehensive listing of product vendors and direct e-mail
links. To view the list, select the “Vendor List” hypertext
link from the main menu, or point your browser to
http://www.xmission.com/~imagicom/index/vendors.html.

Imagicom also produces monthly announcements about its
newest features and products. To get on the mailing list,
just select the “Mailing List” button from their home page.
For more information about Imagicom you can e-mail the
company at imagicom@xmission.com.
NUARY 1996 Delphi INFORMANT ▲ 37

At Your Fingertips
BY Dav i d R i p py
Delphi / Object Pascal

Figure 2: This code is attached to the OnClick method of the Button1
component.

ou’ll learn more about a road by traveling it
than by consulting all the maps in the world.

— Unknown

Y

How can I perform a locate on a non-indexed field?
Searching a table for a specific value in an indexed field is easy
with Delphi — just use the FindKey or FindNearest methods.
However, there isn’t a method for finding a value in a non-
indexed field. To do so, you’ll need to write a little code.

Examine the
form in Figure 1.
The Edit com-
ponent (Edit1)
allows the user to
enter a value to
search for in the
non-indexed col-
umn, Name of

Pet, in Table1.
When the user
presses the
Search button,
the form exe-
cutes the code in
Figure 2.

First, the GetBookmark method sets a bookmark on the record
the user is positioned on. Next, the table is searched sequentially
starting from the first record. If a match is found, the bookmark
is set on the first record that matches the search criteria, and the
table cursor is moved to that record with the GotoBookmark
method. If a match is not found, the cursor returns to the record
that the user was originally positioned on.

Notice the use of the DisableControls method. This accelerates our
search process by disconnecting the DataSet from the DataSource
component. If we had not called this method, the DBGrid would

Figure 1: This form performs a search on the non-
indexed field, Name of Pet.
JANUARY 1996
be updated every time the Next method was called. For fun, com-
ment out the call to DisableControls and see what happens. — D.R.

How can I determine the record number in
a Paradox table?
This is a common request with a less-than-obvious solution.
Delphi does not inherently provide a method for determining the
record number, but the Borland Database Engine (BDE) can help.

The form in Figure 3 displays a DBGrid component and a
Label component. The Label (Label1) displays the record
number of the current record in the DBGrid. As the user nav-
Delphi INFORMANT ▲ 38

Figure 5: This MessageDlg-generated dialog box is too wide.

Figure 3: The Record No Label
component is updated as the user
navigates the DBGrid.

At Your Fingertips
igates the records in the
DBGrid, the record number
updates accordingly.

Examine the code in Figure 4.
The first thing you’ll notice is
that two units, DbiProcs and
DbiTypes, have been added in
a uses clause. These units pro-
vide the program with the
information necessary to make
calls to the BDE application
programming interface. You
must include these header files
in your uses clause for this
example to work.
The code in Figure 4 is attached to the DataSource compo-
nent’s OnDataChange event handler. It’s placed here so the
record number label is updated when the user navigates
through the DBGrid. First, the code checks to ensure Table1 is
active. If it’s inactive, no attempt is made to update Label1.

Next, the UpdateCursor method is called to ensure the Table is
synchronized with the BDE cursor. The BDE dbiGetSeqNo
method is then called to retrieve the record number of the cur-
rent record in the Paradox table. Finally, Label1 is updated with
the new record number.
David Rippy is a Senior Consultant with Ensemble Corporation, specializing in the
design and deployment of client/server database applications. He has contributed to
several books published by Que, and is a contributing writer to Paradox Informant.
David can be reached on CompuServe at 74444,415.

Figure 4: Notice the uses clause that’s been added to include
DbiProcs and DbiTypes.
If you need more information on the available BDE calls,
Borland offers the Borland Database Engine User’s Guide as a
complete reference of the BDE. To order call Borland
Customer Service at (510) 354-3828.
— D.R.

How can I create a two-line message using the
MessageDlg function?
If you’ve ever used the MessageDlg function to display a long mes-
sage, you probably ended up with a dialog box similar to the one
JANUARY 1996
in Figure 5. The dialog box would be more attractive if the mes-
sage, “There is nothing uglier than a really long dialog box,” were
split into two lines. [For more information about MessageDlg, see
Kevin Bluck’s article “Building a Better MessageDlg” on page 24.]

To divide a message into two lines, insert a carriage return and
line feed into the string where you want to break it. For instance,
to split the example message into two lines, use the following
Object Pascal statement:

MessageDlg('There is nothing uglier' + #13#10 +
'than a really long dialog box.',
mtInformation, [mbOK], 0)

Figure 6 shows
the same dialog
box with the
message on two
lines. This tech-
nique is also use-
ful with other
functions that
generate a dialog
box (e.g. ShowMessage, InputBox, and InputQuery) when you
have a large amount of text to display, but don’t want a wide
dialog box. — Russ Acker, Ensemble Corporation

How can I quickly move to a property in
the Object Inspector?
While positioned in the Object Inspector, press F. This
moves the cursor from the Value column (right side) to the
Property column (left side). You can then type the first letter(s)
of the property you want, and the cursor will jump to that
property in the list. — David Faulkner, Silver Software Inc. ∆

The sample projects referenced in this article are available on the Delphi
Informant Works CD located in INFORM\96\JAN\DI9601DR.

Figure 6: That’s better!
Delphi INFORMANT ▲ 39

Orpheus
A Grab Bag of Powerful Custom Components

Complete with Source Code

New & Used
B Y Cary Jensen, Ph.D.
O rpheus, from TurboPower Software
Company, is a large collection of Delphi
components that qualifies as one of the

best bargains in the Delphi add-on market.

Among the components included in Orpheus are: a text editor
with 16MB capacity, data-aware edit fields with strong data-
integrity support, a timer that can control multiple timer
events while using only one Windows timer resource, a set of
flexible spinner controls, a Windows 95-like tabbed notebook,
and much more.

Overall, the components available in Orpheus are well
designed from an object-oriented standpoint. Most of
Orpheus’ components descend from the TOvcBase class,
which is a direct descendant of Delphi’s TCustomComponent.
Through TOvcBase, Orpheus components inherit a property
that enables them to use the TOvcController component.
(Later, we’ll discuss TOvcController in more depth.)

As mentioned, Orpheus consists of a remarkably diverse collec-
tion of components. So many, in fact, that it’s impossible to ade-
quately describe all of them in this review. In this limited space,
I hope to provide you with a feel for what types of components
you’ll find in this product.

Inside Orpheus
The components of Orpheus can be roughly divided into six
categories: edit fields, array editors, text editors, file viewers, a
sophisticated grid control, and a whole collection of useful
components that I will simply call “gadgets.”
JANUARY 1996
The edit fields consists of both simple edit fields as well as
data-aware controls. The data-aware controls use the Delphi
DataSource component to work with table data, and there-
fore, are similar to Delphi’s data-aware controls.

However, all these controls make available validation features
that you will find invaluable. For example, there are edit controls
for general text, as well as
for numbers and pictures.

Furthermore, the text and
number fields support
complex picture properties
that allow you to control
the format and content of
a user’s input. For exam-
ple, the Object Inspector
in Figure 1 displays the
properties for the data-
aware TOvcDbSimpleField
component. Clearly, you
can see the richness of this
component.

The array editors let
users edit data stored in
arrays, linked-lists, or
tables using a listbox-like
control. Because the
array editors are not
actually Windows list-
boxes, they are not

Figure 1: Several of the
TOvcDbSimpleField component’s rich
set of properties, as seen through the
Delphi Object Inspector.
Delphi INFORMANT ▲ 40

New & Used

Figure 2 (Top): The example project, FILEVIEW.EXE, uses the
TOvcFileViewer component to display the contents of a file in hex.
Figure 3 (Bottom): The Orpheus Command Table Editor.
bound by Windows’ 32K limit. This added capacity comes at
a price, however, because you must write the code to paint
each cell of the array editor. Fortunately, this is not too diffi-
cult since Orpheus provides an easy-to-use OnGetItem event
property for the purpose.

Orpheus supplies three text editor components: TOvcTextEditor,
TOvcTextFileEditor, and TOvcDBTextEditor. They allow users to
edit files up to 16MB in length, and provide common editor fea-
tures such as word wrap, bookmarks, and search-and-replace. The
basic text editor, TOvcTextEditor, can allow users to edit data,
while TOvcTextFileEditor adds I/O capability, including reading
directly from, and writing to, text files. TOvcDBTextEditor is a
data-aware version of the text editor, and enables users to edit the
contents of a text field from a specified DataSource component.

The file view components enable you to add file browsing
capability to your applications. The two basic viewer compo-
nents that you’ll probably use include TOvcTextFileViewer,
which is used to view ASCII files, and TOvcFileViewer, which
can be used for viewing either text or binary files. Figure 2
shows an example project that ships with Orpheus that uses
the TOvcFileViewer component.

The Orpheus Table component, TOvcTable, is a sophisticated
grid control that can display data from tables. While this
component provides far more features than Delphi’s DBGrid,
it’s also substantially more difficult to use. On the plus side,
TOvcTable allows you to create a grid control that displays
table data using simple fields, checkboxes, combo-boxes,
graphics, and memos. Consequently, you have a great deal
more flexibility in how you can display table data than using
DBGrid. On the downside, TOvcTable does not have a
DataSource property. Instead, you must write event handlers
to read and write the data from a TDataSet component.

The final group that I (probably unfairly) call gadgets, is a
varied collection of components that you can implement in
many of your applications. Among these are a tabbed note-
book that permits you to display tabs either vertically or hori-
zontally, a set of spinner controls, a calendar component, a
progress meter, a rotated text component, a data transfer
component (for moving data easily between forms), and a
timer pool (a component that manages multiple timer events
while using only one Windows timer). Most of these compo-
nents are sophisticated, and I regret not being able to give
them adequate coverage here.

The Controller
Most of Orpheus’ components make use of TOvcController. It
serves as a central processing component for key strokes and
exceptions. The first time you place a controller-enabled compo-
nent on a form, a TOvcController component is created.

While the controller provides the Orpheus components with
access to exception handling facilities, it provides you, as the
developer, with the ability to define keystroke-to-command map-
JANUARY 1996
ping for all the Orpheus components. This can be done at design
time through the Command Table Editor, shown in Figure 3.

This dialog box is the property editor for the EntryCommand
property of the TOvcController component. With the
Command Table Editor, you can map up to two key strokes
or key-stroke combinations to a given command. Additional
flexibility is provided by permitting you to load alternative
keystroke-to-command tables for use by the controller at run
time. This allows you to easily customize the user interface to
meet your user’s needs.

Documentation
The Orpheus documentation is 600 pages, and covers both
installation and component use. Each component is described in
detail, including an object tree that shows the ancestry of each
component, property, method, and event lists, as well as a
detailed description of each developer method.
Delphi INFORMANT ▲ 41

Orpheus is a large collection
of mainly data-related com-
ponents. It comes with source
code and a royalty-free license
to distribute applications
based on these components.
Considering the 60-day
money-back guarantee and
the reasonable price, it would
be hard to go wrong with
Orpheus.

TurboPower Software
Company
P.O. Box 49009
Colorado Springs, CO 80949
Voice: (719) 260-9136 or
BBS: (719) 260-9726
E-Mail: CIS: 76004,2611
Web Site: http://www.tpower.com/
US or Canadian orders:
(800) 333-4160
Price: US$199

New & Used

Cary Jensen is Contributing Editor to
Delphi Informant.
The writing is clear and understandable, and the examples are
well thought out and complete. It’s without a doubt, the best
documentation that I’ve seen for a third-party product.

Orpheus also ships with a collection of example projects that
demonstrate how to use the various components. These examples
are especially useful in helping you understand some of the more
complicated components, such as the TOvcTable component and
array editors.

Installation
Orpheus includes an installation program that loads the neces-
sary units and support files, including source code, help files,
and example projects.

To make the help available from within the IDE, you must
manually copy these help files to the appropriate directory, and
run the Delphi HelpInst utility. This is not complicated, howev-
er, and the process is described in the Orpheus documentation.

Installing all the Orpheus components, help, and example files
requires about 10MB of disk space.
JANUARY 1996
Conclusion
Orpheus is a large collection of pow-
erful Delphi components that
includes something for every devel-
oper. The objects themselves are well
designed, and backed by outstanding
documentation. The heavily docu-
mented source code that is included
serves as an excellent example of how
to build Delphi components. In
short, even if you have a use for only
one or two of Orpheus’ many com-
ponents, you will find this product
well worth the money. ∆
Delphi INFORMANT ▲ 42

RoboHELP 95
A Better Way to Create Help Systems

New & Used
b y Gary Entsminger

Figure 1: RoboHELP’s tool palette floats on top of Word.
R oboHELP 95 is a tool for creating Windows-
compatible Help systems. From RoboHELP’s
point of view, help can be the Help system

you call from an application’s main menu, or it can
be a stand-alone look-up system that allows naviga-
tion through virtually any kind of information — cat-
alogs, classification systems, histories, employee
handbooks, training manuals, tutorials, etc.

Used with Microsoft Word for Windows, RoboHELP devel-
ops help projects that are compiled with the Windows Help
compiler. RoboHELP is the bridge between a Word help doc-
ument and the Windows Help compiler. If you’ve ever tried
to move from a Word document to the Help compiler, you’ll
appreciate the RoboHELP bridge.

RoboHELP creates and organizes the help project. The
Windows Help compiler expects the Word document to con-
tain codes indicating how your Help system operates. These
codes contain help topics, graphics, hotspots, jumps, macros,
and other links. Creating those codes from scratch is a lot of
work, so RoboHELP assists you with a visual tool palette.

In a nutshell, RoboHELP does the dirty, low-level work of
presenting your text as a Windows Help system to the
Windows Help compiler. It handles the details, allowing for
more time to focus on creating, formatting, and fine tuning
the information in your Help system. After all, the informa-
tion is what counts, right?

The Tool Palette
Creating information is mostly editing, importing, and for-
matting text and graphics, and you can manage this best with
a word processor. To make Word and RoboHELP accessible
from one screen, RoboHELP’s tool palette floats on top of
Word (see Figure 1).
JANUARY 1996
In the RoboHELP system, the two tasks of creating help
information and a help project are well integrated. If your
screen is big enough, you could even have a Delphi project
displayed alongside the Word help document you’re creating
for that project, as well as the RoboHELP visual palette.

As you can see in Figure 1, RoboHELP is relatively unobtru-
sive. In addition, it modifies the Word menu during a
RoboHELP/Word session, allowing you to select RoboHELP
commands from Word menus (see Figure 2). This is a clear,
intuitive approach.

Using a Help System
Consider how you typically use a Help system. Let’s say
you’re working in Delphi and select Help | Contents from
the menu. Although you have requested an action from
Delphi, it passes the request to the Windows help viewer,
which, in turn displays the Delphi Help system contents
window. This window, like the others in the Delphi Help
Delphi INFORMANT ▲ 43

Figure 4: Windows Help system hotspots are green and underlined.

New & Used
system, is displayed by the
Windows help viewer. Thus they
have an appearance consistent with
other Windows Help systems.

Consistent interfaces enable users
to learn one system and apply that
knowledge to others. Because Help
systems created with RoboHELP
access the Windows help viewer,
they maintain this consistency (see
Figure 3).

Without RoboHELP, creating a
Help system is a fairly dark business,
and I’ll spare you the details. Instead
I’ll show you how to develop a Help
system using RoboHELP and Word.
I’m using Windows 95, Word 7, and
RoboHELP 95, but you can also use
Windows 3.x, RoboHELP 3, and
Word 6 to produce similar results. The Windows 95 help
interface has a new look and more features, but generally acts
like a Windows 3.x Help system. Note that RoboHELP 95 is
required to create Help systems for Windows 95 and
Windows NT, and RoboHELP 3 is used to develop within
Windows 3.x. You cannot run a help file compiled by the
Windows 95 Help compiler in Windows 3.x.

Building a Help Project
There’s really not a lot of work to it. To create a Help system
you must:
• define a set of help topics (not necessarily all at once)
• create or import the actual text for the topics
• create hotspots and jumps to allow the user to navigate

the Help system
• optionally, import graphics and other personalizing stamps

into the Help system

Figure 2: RoboHELP’s
menu options are inte-
grated with Word’s.
JANUARY 1996

Figure 3: The Contents page of the RoboHELP Help system.
In addition, you need some knowledge of hotspots and
jumps. Hotspots are the green (by default) underlined text
in help windows (see Figure 4). Jumps are destination top-
ics, indicating where the system should go when a user
selects a hotspot. Each jump points to a help topic to dis-
play, making the Help system interactive.

A Few Steps
Here we go: RoboHELP Help system 1, Take 1. You’ve
already installed RoboHELP (that was a snap). Now start it
up and begin creating a RoboHELP project.

The first thing that RoboHELP does is fire up a copy of
Word. Even if Word is open, RoboHELP loads a new copy.
This allows the RoboHELP/Word interaction to be inde-
pendent of whatever else you might be doing in Word.

RoboHELP then displays its main menu and the Create
New Help Project dialog box (see Figure 5). Notice the
Title and File Name edit boxes, and the default information
placed in these boxes by RoboHELP. Simply add a title
(such as “Delphi sample Help system”) and rename the
project. For our example, name the project db1.hpj.

RoboHELP creates the project files and displays a message in
the Word document (see Figure 6).

This is the pattern. Each time you select items from the visual
palette, RoboHELP assists by making suggestions and dis-
playing prompts.

Creating Topics and Jumps
Next, create a topic by following RoboHELP’s suggestion to
click the Topic tool. The New Topic dialog box opens. Add
the topic, “Folder 1, Plattsville Plant,” and press OK.

RoboHELP creates the codes for the new topic and indi-
cates where the text for the topic should go (see Figure 7).
Delphi INFORMANT ▲ 44

Figure 5 (Top): The RoboHELP Create New Help Project dialog box.
Figure 6 (Middle): Getting started. RoboHELP creates the project files
and displays a message in the Word document. Figure 7 (Bottom):
RoboHELP creates the codes for a new help topic.

New & Used

Figure 8: RoboHELP creates the codes for a new jump.
Add some help text, “Folder 1, Plattsville plant contains
employee, consultant, revenue, and expense tables.”
JANUARY 1996
Now create a second topic, “Table1, Plattsville plant,” and press
OK. RoboHELP again creates the codes for the new topic and
indicates where the topic’s text should go. It creates the new topic
on a new page. This means that the new topic won’t be shown at
the same time as the first topic, which is on the first page.

Add more help text for the Table1, employees topic, “Table 1,
employees, includes the records for all permanent and tempo-
rary employees. Consultants are not included in this table.”

To create a jump, select the Jump tool and use the Jump dialog
box to create the hotspot text and the help topic to display when
the user clicks on the hotspot text. RoboHELP creates the codes
for the new jump (see Figure 8).
It’s as simple as that. Use similar tools and dialog boxes to
add graphics. As your system develops, you can fine tune
and modify your work within Word and/or RoboHELP.

When you want to compile your help creations, you make the
project by selecting the Make tool from the visual palette.
This is as straightforward as compiling an Object Pascal,
Paradox for Windows, or Visual Basic project (see Figure 9).

Conclusion
The RoboHELP and Word combination for creating Help
systems is a good one. You enjoy the ease of accomplishing
word processing tasks with a sophisticated word processor,
and RoboHELP handles the project and conversion details.

Assuming you are familiar with Word, you already know most of
the requirements to create a Help system with RoboHELP. You
use Word to add and manipulate graphics, and to import infor-
mation from other sources.

RoboHELP allows you to access the Windows Help engine
and customize the appearance of help windows. You can add
glossary buttons and even context-sensitive help by using the
custom control Hypertext Help button included with
Delphi INFORMANT ▲ 45

New & Used

Figure 9: Making a help project.
RoboHELP. You can use RoboHELP to import existing help
source projects, graphics, text, and .RTF files. In addition,
RoboHELP 95 supports new Windows 95 help features, such
as the Contents Tab. Two RoboHELP tools — Screen
Capture and Contents Tab Composer — are especially useful.

The RoboHELP manual is informative and readable, and I
breezed through several of the examples. When at one point I
did need technical support in a hurry, I received it.

Finally, although you can create
context-sensitive Help systems with
RoboHELP, that’s another ball of
wax, requiring access to Borland
Resource Workshop, the Microsoft
SDK Dialog Box Editor, or the
equivalent. Although creating a
basic Help system is relatively easy,
tackling a context-sensitive Help
system is for the lion-hearted.

Other RoboHELP support tools
are available from Blue Sky, the
makers of RoboHELP. These tools
can help you create more sophisti-
cated Help systems that include
OLE and video connections.
These, along with help debugging
tools, are packaged as RoboHELP
Office 95. ∆

RoboHELP 95 is a tool for
building Windows-compatible
Help systems. It can be a stand-
alone look-up system, or it can
call help from an application’s
main menu. Developers can
also customize the help win-
dows, and add glossary buttons
and context-sensitive help.

Blue Sky Software Corp.
7777 Fay Avenue, Suite 201
La Jolla, CA 92037
Phone: (619) 551-2485 or (800)
459-2356
Fax: (619) 551-2486
CompuServe: 73473,3636
Web Site: http: //www.blue-
sky.com
Price: RoboHELP 95 and
RoboHELP 3.0, US$499. Upgrades
from RoboHELP 3.0, US$149.
RoboHelp Office is US$599.
JANUARY 1996 Delphi INFORMANT ▲ 46

Gary Entsminger’s new book, The Way of Delphi, an intermediate and advanced guide to
object-oriented Delphi development, is forthcoming from Prentice-Hall. He is currently
working on a new book and trying to make the most of 32-bit systems. He can be
reached on CompuServe at 71141,3006.

TextStream
Delphi How-To Solves Programmers’ Problems

If you’ve already plowed
your way through one or
more of the traditional
Delphi books, you may be
ready for Borland Delphi
How-To: The Definitive
Delphi Problem-Solver, by
Gary Frerking, Nathan
Wallace, and Wayne
Niddery. Like other books
in the Waite Group Press’
“How-To” series, this is not
a tutorial, but a collection
of techniques for solving
specific programming
problems.

Each section poses a ques-
tion, beginning with the
words “How Do I ...” and
followed by a topic such as
“Create a system modal
form,” “Scroll portions of a
dialog,” or “Run another
application from my appli-
cation.” The text of each
section begins with a brief
problem statement, fol-
lowed by a short descrip-
tion of the technique to be
used. A longer section
labeled “Steps” then walks
you through the creation of
a complete program that
illustrates the technique.

Each step in the sequence is
an atomic action, such as
setting a group of proper-
ties or keying a (usually
short) procedure. I particu-
larly like the presentation
JANUARY 1996
of code fragments within
the steps. After a sentence
indicating what you’re
about to do, the code
appears in a distinguishing
font. Lines that Delphi gen-
erates automatically appear
against a normal white
background, while lines
that must be keyed appear
against a light gray screen.

The Steps section is followed
by a discussion of “How It
Works,” which provides
commentary on the code. In
some cases, other subhead-
ings are added to address key
points raised by the example.
Concluding remarks appear
under the heading
“Comments.”

Topics vary from the fairly
trivial to those that are
lengthy and complex. An
indicator at the start of
each topic classifies the
material that follows as easy
(e.g. how to center a form
within its parent), interme-
diate (e.g. how to use drag-
and-drop in applications),
or advanced (e.g. how to
create a user-customizable
toolbar). While the indica-
tors help, the material
seems directed toward too
broad an audience.

Programmers who need the
easy topics may not follow
the advanced topics, and
those who use the advanced
material certainly won’t
need the easy topics.

Some topics seem to be
carry-overs from the Waite
Group’s earlier books on
Visual Basic. While the
ability to compare tech-
niques is interesting, it isn’t
clear that Delphi program-
mers necessarily have the
same concerns as their VB
counterparts. A few other
topics seem too long for
this format. The detailed
examples are helpful, but
it’s easy to lose the essence
of the technique when the
example spans 20 or more
pages dense with code.

Topics are grouped into
chapters according to sub-
ject matter: Forms,
Graphics, Multimedia,
Database, etc. Within each
chapter, topics are ordered
in an apparent attempt to
create a logical presentation
sequence, rather than by
complexity.

The Waite Group claims
that Delphi How-To can be
read sequentially. Although
the topic ordering makes
that approach possible,
most readers are likely to
jump around among topics
of immediate interest.
The accompanying CD-
ROM provides the code for
each of the 113 examples in
the book. Since the code is
uncompressed and contains
an executable file, it is possible
to run the examples directly
from the CD. This lets you
test the program’s effect with-
out either keying the steps or
loading the source code.

If you want to retrieve the
source code for one or more
projects (or even all of
them), an installation pro-
gram provides a high degree
of control over which pro-
jects get installed and
where.

The CD also contains three
bonus programs not
described in the book;
demonstration versions of
three sets of commercial
component (CIUPKS’s
User Friendly VCL,

“Delphi How-To”
(continued on page 48)
Delphi INFORMANT ▲ 47

-

.

,

JANUARY 1996

“Delphi How-To” (cont.)

TextStream
TurboPower’s Orpheus, and
Async’s Professional
Toolkit); and three share-
ware/freeware components.

Borland Delphi How-To is not
a tutorial, although you’ll
probably pick up a few inter-
esting tidbits from its well
presented examples. The
approach is pragmatic, and
the presentation style is
strictly business without
being excessively dry. You
probably will never use every-
thing in the book, but odds
are that you’ll find a few
examples that are just what
you need, either now or on
some future project.
And just one ready-made
solution to a nagging prob-
lem will easily justify the
book’s cost.

— Larry Clark

Borland Delphi How-To: The
Definitive Delphi Problem-
Solver by Gary Frerking,
Nathan Wallace, and Wayne
Niddery, Waite Group Press,
200 Tamal Plaza, Corte
Madera, CA 94925;
phone: (415) 924-2575;
fax: (415) 924-2576.

ISBN: 1-57169-019-0
Price: US$39.95
851 pages, CD-ROM
There Really Are Secrets of Consulting

Gerald M. Weinberg’s The
Secrets of Consulting is sub-
titled A Guide to Giving &
Getting Advice Successfully.
If the definition of consult-
ing truly is “the art of influ
encing people at their
request” (as provided in his
preface), Mr Weinberg suc-
ceeds at giving and getting
advice. After all, he wrote
his book and I read it —
and nobody forced me.

You may not care for his
opinion that “some soft-
ware consultants ... are
retained strictly as supple-
mentary programming
labor ... [for] grunt work ..
turning out computer
code,” and that “The last
thing their ‘clients’ want is
to be influenced.” If this
description sounds a little
too familiar, then you
might also be offended
when you read that
Weinberg considers calling
such “temporary workers”
consultants is merely a ploy
for paying them a few dol-
lars less.

Published by Dorset House
Secrets will not help you
write or debug code. Nor
will it help you design a
database. If you can get
past this, however, there is
much to be learned from
Mr Weinberg. While there
are several aspects to his
book I don’t particularly
like (and I will share them
with you), I encourage
everyone to read this book.
As the subtitle promises, it
is a helpful guide to both
giving and getting advice.

Here are my criticisms. I
don’t like the way the book
is arranged. He mixes up
headings, sub-headings, “the
secrets,” and a variety of
adages, and delivers them
unpredictably. I wish he
would be more consistent.
The illustrations that help
introduce each chapter also
annoy me — they’re a little
too Ralph-Steadmanesque.

I also don’t like all the laws,
rules, and principles; there
are over 100 of them!
Couldn’t he make consult-
ing a little less involved?
And while a clever handle
helps my memory (e.g. The
Law of the Jiggle: Less is
more), this soon becomes
trite and tiresome. I just
wish he’d quit trying to be
so cute. In spite of this, I
still enjoyed one aspect of
Weinberg’s writing style:
while some consultants take
themselves too seriously, he
does not.

This leads me to what
makes Secrets worthwhile:
the content. Weinberg
clearly understands the
client/consultant relation-
ship. Many times I read his
clear explanations of how to
handle situations, while
reflecting on similar cir-
cumstances that I unfortu-
nately misunderstood.

This isn’t just a book to be
read once; it’s a reference.
I’ll confidently refer to it
when I’m troubled by a
project or prospect that I
can’t convert into a client. I
have already avoided several
problems by following his
advice.

For instance, are you famil-
iar with the orange juice test?
And, how do you price
your services? There’s a
whole chapter on pricing.
Although a taboo,
Weinberg sorts through the
issues and quickly explains
ten underlying laws, includ-
ing the “Second Law of
Pricing: The higher the
price, the more the client
loves the consultant,” and
“The less they pay you, the
less they respect you.”

Trust is also examined in
detail. Much of the chapter
devoted to this topic seems
obvious, but is nonetheless
important. He includes such
pearls as “Never promise
anything,” yet “Always keep
your promise.” And when it
comes to contracts, there are
three important rules: “First,
get it in writing. Second, get
it in writing. Third, get it in
writing.”

The Secrets of Consulting
contains 14 chapters, a
preface, a forward, an
index, a listing of the laws,
rules, and principles, and
an excellent section of
“ideas that might get you
learning even more secrets
of consulting.” These
include suggested books to
read, workshops to attend,
and people to learn from.

I recommend this book.

— Jeff Sims

The Secrets of Consulting by
Gerald M. Weinberg, Dorset
House Publishing, 353 West
12th Street, New York, NY
10014, (212) 620-4053.

ISBN:0-932633-01-3
Price: US$32.50
248 pages
Delphi INFORMANT ▲ 48

	Table of Contents
	Symposium
	Delphi Tools
	Multi-Edit for Windows Version 7.01
	Reliance’s Comment++ V1.0 for Windows
	Wintertree Software Ships Sentry Spelling-Checker Engine
	Inner Media Releases Version 3 of DynaZIP

	NewsLine
	Borland Displays Delphi Client/Server Suite 2.0
	Borland to Deliver Tools for Java, Sun’s Internet Programming Language
	Windows 95: Over 10 Million Units Sold
	Kahn Steps Down as Borland Chairman
	Acadia Software Begins Operations in Boston Area

	Great Journeys, Single Steps
	OOP in ’88, Our Benchmark
	Actor & Delphi
	C++ and Delphi
	Class Declarations
	State of the Object Art: Windows, Delphi, Visual Basic, Smalltalk, C++
	Inheritance, a Difference of Opinion
	Delphi’s Object Model
	Delphi: Messages and Composition
	Connecting Objects: A DDE Project
	Wrap Up

	The Dynamics of Delphi DDE
	Conversation Types
	DDE Servers
	Appraising Property Value
	DDE Clients
	The SRVRDEMO Application
	Implemented Macros
	The CLNTDEMO Application
	SRVRDEMO and CLNTDEMO Working Together
	Brackets Are Optional
	Conclusion
	Listing One — The SRVRDEMO Project
	Listing Two — The CLNTDEMO Project

	Building a Better MessageDlg
	Reusing Existing Code
	Adding the Caption and Beep
	Making the Dialog Box Persistent
	Eliminating Enter
	An Earful
	Listing Three — The MsgDlgs Unit

	Filtering Tables: Part I
	Less Is More
	Displaying Linked Tables
	Vital Links
	Using Ranges
	Using ApplyRange
	Range Example
	Conclusion

	Borland Online
	Sidebar - Web Site of the Month

	At Your Fingertips
	How can I perform a locate on a non-indexed field?
	How can I determine the record number in a Paradox table?
	How can I create a two-line message using the MessageDlg function?
	How can I quickly move to a property in the Object Inspector?

	Orpheus
	Inside Orpheus
	The Controller
	Documentation
	Installation
	Conclusion

	RoboHELP 95
	The Tool Palette
	Using a Help System
	Building a Help Project
	A Few Steps
	Creating Topics and Jumps
	Conclusion

	TextStream
	Delphi How-To Solves Programmers’ Problems
	There Really Are Secrets of Consulting

